582
Views
20
CrossRef citations to date
0
Altmetric
Review

Current and emerging robotic assisted intervention for Notes

&
Pages 1095-1105 | Received 07 Jul 2016, Accepted 25 Oct 2016, Published online: 10 Nov 2016

References

  • Döbrönte Z, Wittmann T, Karácsony G. Rapid development of malignant metastases in the abdominal wall after laparoscopy. Endoscopy. 1978;10:127–130.
  • Dasari BV, McKay D, Gardiner K. Laparoscopic versus open surgery for small bowel crohn’s disease. Cochrane Database Syst Rev. 2011;1:CD006956.
  • Schwenk W, Haase O, Neudecker J, et al. Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev. 2005;3:CD003145.
  • Vestweber B, Galetin T, Lammerting K, et al. Singleincision laparoscopic surgery: outcomes from 224 colonic resections performed at a single center using SILS. Surg Endosc. 2013;27:434–442.
  • Boni L, Dionigi G, Cassinotti E, et al. Single incision laparoscopic right hemicolectomy. Surg Endosc. 2010;24:3233–3236.
  • Geisler D, Kirat H, Remzi F. Single-port laparoscopic total proctocolectomy with ileal pouch-anal anastomosis: initial operative experience. Surg Endosc. 2011;25:2175–2178.
  • Pelosi MA, Pelosi MAIII. Laparoscopic appendectomy using a single umbilical puncture (minilaparoscopy). J Reprod Med. 1992;37:588–594.
  • Canes D, Desai MM, Aron M, et al. Transumbilical single-port surgery: evolution and current status. Eur Urol. 2008;54(5):1020–1029.
  • Romanelli JR, Earle DB. Single-port laparoscopic surgery: an overview. Surg Endosc. 2009;23:1419–1427.
  • Roberts KE. True single-port appendectomy: first experience with the “puppeteer technique”. Surg Endosc. 2009;23(8):1825–1830.
  • Hodgett SE, Hernandez JM, Morton CA. Laparoscopic single site (LESS) cholecystectomy. Gastrointest Surg. 2009;13:188–192.
  • Leroy J, Cahill RA, Asakuma M, et al. Single-access laparoscopic sigmoidectomy as definitive surgical management of prior diverticulitis in a human patient. Arch Surg. 2009;144:173–179.
  • Pearl JP, Ponsky JL. Natural orifice translumenal endoscopic surgery: a critical review. Gastrointest Surg. 2008;12:1293–1300.
  • De la Fuente SG, DeMaria EJ, Reynolds JD, et al. New developments in surgery: natural orifice transluminal endoscopic surgery (NOTES). Arch Surg. 2007;142:295–297.
  • Rattner D, Kalloo A. ASGE/SAGES working group on natural orifice translumenal endoscopic surgery. Surg Endosc. 2006;20:329–333.
  • Marescaux J, Dallemagne B, Perretta S, et al. Surgery without scars: report of transluminal cholecystectomy in a human being. Arch Surg. 2007;142:823–826.
  • Haber GP, Crouzet S, Kamoi K, et al. Robotic NOTES (natural orifice translumenal endoscopic surgery) in reconstructive urology: initial laboratory experience. Urology. 2008;71:996–1000.
  • Kalloo AN, Singh VK, Jagannath SB, et al. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Surg. 2004;60(1):114–117.
  • Rao G, Reddy N. Transgastric appendectomy in humans. Oral presentation at the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) conference; 26–29 April 2006. Dallas, Tex, USA; 2006.
  • Swanstr¨om LL. Natural orifice transluminal endoscopic surgery. Endoscopy. 2009;41(1):82–85.
  • S´anchez-Margallo FM, Asencio JM, Tejonero MC, et al. Technical feasibility of totally natural orifice cholecystectomy in a swine model. Minim Invasive Ther Allied Technol. 2008;17(6):361–364.
  • Gumbs AA, Fowler D, Milone L, et al. Transvaginal natural orifice translumenal endoscopic surgery cholecystectomy: early evolution of the technique. Ann Surg. 2009;249(6):908–912.
  • Dallemagne B, Marescaux J. The ANUBIS™ project. Minim Invasive Ther Allied Technol. 2010;19:257–261.
  • De Donno A, Zorn L, Zanne P Introducing STRAS: A new flexible robotic system for minimally invasive surgery. IEEE International Conference on Robotics and Automation (ICRA), 2013. p.1213–1220
  • Phee SJ, Low SC, Sun ZL, et al. Robotic system for no-scar gastrointestinal surgery. Int J Med Robotics Comput Assist Surg. 2008;4:15–22.
  • Phee SJ, Ho KY, Lomanto D, et al. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave translumenal endoscopic robot (MASTER). Surg Endosc. 2010;24:2293–2298.
  • Phee SJ, Low SC, Huynh VA, et al. Master and slave translumenal endoscopic robot (MASTER) for natural orifice translumenal endoscopic surgery (NOTES). Conf Proc IEEE Eng Med Biol Soc. 2009;4:1192–1195.
  • Lomanto D, Wijerathne S, Ho LK, et al. Flexible endoscopic robot. Minim Invasive Ther Allied Technol. 2015;24:37–44.
  • Ho KY, Phee SJ, Shabbir A, et al. Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER). Gastrointest Endosc. 2010;72:593–599.
  • Wang Z, Phee SJ, Lomanto D, et al. Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study. Endoscopy. 2012;44:690–694.
  • Chiu PW, Phee SJ, Wang Z, et al. Feasibility of full-thickness gastric resection using master and slave transluminal endoscopic robot and closure by overstitch: a preclinical study. Surg Endosc. 2014;28:319–324.
  • Sun Z, Ang RY, Lim EW, et al. Enhancement of a master-slave robotic system for natural orifice transluminal endoscopic surgery. Ann Acad Med Singapore. 2010;40:223–230.
  • Phee SJ, Reddy N, Chiu PW, et al. Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin Gastroenterol Hepatol. 2012;10:1117–1121.
  • Wang Z, Sun Z, Phee SJ. Haptic feedback and control of a flexible surgical endoscopic robot. Comput Methods Programs Biomed. 2013;112:260–271.
  • Abott DJ, Becke C, Rothstein RI, et al. (2007) Design of an endolumenal NOTES robotic system. Proceedings of IEEE/RSJ international conference on intelligent robots and systems,2007. p. 410–416
  • Aron M, Haber GP, Desai MM, et al. Flexible robotics: a new paradigm. Curr Opin Urol. 2007;17:151–155.
  • Rothstein RI, Ailinger RA, Peine W. Computer-assisted endoscopic robot system for advanced therapeutic procedures. Gastrointest Endosc. 2004;59(5):P113.
  • Cauche H, Hiernaux M, Chau A. Endomina: the endolumenal universal robotized triangulation system: description and preliminary results in isolated pig stomach. Gastrointest Endosc. 2013;77:AB204–AB205.
  • Xu K, Zhao J, Shih AJ. Development of an endoscopic continuum robot to enable transgastric surgical obesity treatment. in International Conference On Intelligent Robotics And Applications (icira) montreal, quebec, canada. Przeglad Lekarski. 2012;69:589–600.
  • Zhao J, Zheng X, Zheng M, et al. An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for notes procedures. in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics; 2013; Wollongong, Australia, 2013. P. 63–70
  • Suzuki N, Hattori A, Tanoue K, et al. Scorpion shaped endoscopic surgical robot for NOTES and SPS with augmented reality functions. In: Liao H, Edwards PJE, Pan X, Fan Y, Yang G-Z (eds) Medical Imaging and Augmented Reality; 2010. Berlin: Springer; 2010. p. 541–550.
  • Poon CCY, Yang H, Lau KC, et al. A bioinspired flexible robot with hybrid actuation mechanisms for endoscopic surgery. The Hamlyn Symposium on Medical Robot; 12-15 July 2014.
  • Lau KC, Hu Y, Poon CCY, et al. Design and development of a task specific surgical robot for endoscopic submucosal dissection. IEEE International Symposium on Optomechatronic technologies; 2014 Seattle, 2014
  • Lehman AC, Dumpert J, Wood NA, et al. Natural orifice cholecystectomy using a miniature robot. Surg Endosc. 2009;23:260–266.
  • Platt SR, Hawks JA, Rentschler ME. Vision and task assistance using modular wireless in vivo surgical robots. IEEE Trans Biomed Eng. 2009;56(6):1700–1710.
  • Rentschler ME, Dumpert J, Platt SR, et al. Natural orifice surgery with an endolumenal mobile robot. Surg Endosc. 2006;21:1212–1215.
  • Rentschler ME, Platt SR, Dumpert J, et al. Miniature in vivo robots for remote and harsh environments. IEEE Trans Inf Technol Biomed. 2008;12(1):66–75.
  • Lehman AC, Berg KA, Dumpert J, et al. Surgery with cooperative robots. Comp Aided Surg. 2008;2:95–105.
  • Park S, Bergs RA, Eberhart R, et al. Trocar-less instrumentation for laparoscopy: magnetic positioning of intra-abdominal camera and retractor. Ann Surg. 2007;245(3):379–384.
  • Zeltser IS, Bergs R, Fernandez R, et al. Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model. J Urol. 2007;178(1):288–291.
  • Scott DJ, Tang SJ, Fernandez R, et al. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,”. Surg Endosc. 2007;21(12):2308–2316.
  • Tognarelli S, Salerno M, Tortora G, et al. A miniaturized robotic platform for natural orifice transluminal endoscopic surgery: in vivo validation. Surg Endosc. 2015;29:3477–3484.
  • Harada K, Susilo E, Menciassi A, et al. Wireless reconfigurable modules for robotic endoluminal surgery. in Proceedings of the IEEE International Conference on Robotics and Automation; 2009; Kobe, Japan, 2009. p. 2699–2704
  • Harada K, Russo S, Ranzani T, et al. Design of Scout Robot as a robotic module for symbiotic multi-robot organisms. in Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science; 2011; Nov.
  • Amir D, Howie C, Alon W, et al. Percutaneous intrapericardial interventions using a highly articulated robotic probe. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics; 2006. p. 7–12
  • Amir D, Howie C, Alon W, et al. Highly articulated robotic probe for minimally invasive surgery. In proceedings of the 2006 IEEE international conference on robotics and automation; 2006, Orlando, Florida. IEEE Eng Med Biol Society Annu Conf. 2006;2006:4167–4172.
  • Swain P. The shapelock system adapted to intragastric and transgastric surgery. Endoscopy. 2007;39:466–470.
  • Swanstrom LL, Kozarek R, Pasricha PJ, et al. Development of a new access device for transgastric surgery. Gastrointest Surg. 2005;9(8):1129–1137.
  • Swanström L, Swain P, Denk P. Development and validation of a new generation of flexible endoscope for NOTES. Surg Innov. 2009;16:104–110.
  • DePaula AL, Kozarek RA, Birkett DH, et al. A novel system for performing endolumenal antireflux surgery and other endosurgical procedures. M2286; 2006. Los Angeles: Digestive Disease Week (DDW); 2006. p. 19–25.
  • Pai RD, Fong DG, Bundga ME, et al. Transcolonic endoscopic cholecystectomy: a NOTES survival study in a porcine model [with video]. Gastrointest Endosc. 2006;64:428–434.
  • Swain P, Rothe C, Bergstrom M, et al. Development and testing of a new platform for retroflexed flexible transgastric surgery: cholecystectomy, fundoplication, gastric restriction and diaphragmatic repair. Gastrointest Endosc. 2006;63(5):725.
  • Horgan S, Thompson K, Talamini M, et al. Clinical experience with a multifunctional, flexible surgery system for endolumenal, single-port, and NOTES procedures. Surg Endosc. 2011;25(2):586–592.
  • Horgan S, Jacobsen G, Weiss GD, et al. Incisionless revision of post-Roux-en-Y bypass stomal and pouch dilation: multicenter registry results. Surg Obes Relat Dis. 2010;6(3):290–295.
  • Yagi A, Matsumiya K, Dohi T. Slider linkage lock mechanism using air pressure for rigid-flexible outer sheath for endoscopic surgery. Proc 1st Asian Symp Comput Aided Surg. 2005;7(2):194–197. Tsukuba, Japan.
  • Yagi A, Matsumiya K, Masamune K, et al. Rigid-flexible outer sheath model using slider linkage locking mechanism and air pressure for endoscopic surgery. Proc. of 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2006. p. 503–510.
  • Zuo S, Masamune K, Kuwana K, et al. Nonmetallic rigidflexible outer sheath with pneumatic shapelocking mechanism and double curvature structure. Med Image Comput Comput Assist Interv –MICCAI 2012. Lecture Notes Comput Sci. 2011;6891:169–177.
  • Zuo S, Yamanaka N, Sato I, et al. MRICompatible rigid and flexible outer sheath device with pneumatic locking mechanism for minimally invasive surgery. Medical Imaging and Augmented Reality - MIAR 2008. Lecture Notes Comput Sci. 2008;5128:210–219.
  • Zuo S, Masamune K, Kuwana K, et al. Nonmetallic guide sheath with negative pressure shapelocking mechanism for minimally invasive image-guided surgery. Proc Inf Communications Technol (PICT). 2012;3:1–9.
  • Zuo S, Ohdaira T, Kuwana K, et al. Developing essential rigid-flexible outer sheath to enable novel multi-piercing surgery. Med Image Comput Comput Assist Interv –MICCAI 2012. Lecture Notes Comput Sci. 2012;7510:26–33.
  • Zuo S, Iijima K, Tokumiya T, et al. Variable stiffness outer sheath with “dragon skin” structure and negative pneumatic shape-locking. Int J Comput Assist Radiol Surg. 2014;9(5):857–865.
  • Kim Y, Cheng D, Kim S, et al. Design of a tubular snakelike manipulator with stiffening capability by layer jamming. in Proc. Int. Conf. Intell. Robot. Syst.; 2012; Portugal. p. 4251–4256
  • Kim YJ, Cheng S, Kim S, et al. A stiffness adjustable hyperredundant manipulator using a variable neutralline mechanism for minimally invasive surgery. IEEE Trans Robot. 2014;29(4):1031–1042.
  • Cianchetti M, Ranzani T, Gerboni G, et al. STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013; 3576–3581
  • Cianchetti M, Ranzani T, Gerboni G, et al. Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robotics. 2014;1(2):122–131.
  • Ranzani T, Gerboni G, Cianchetti M, et al. A bioinspired soft manipulator for minimally invasive surgery. IOP Bioinspir Biomim. 2015;10(3):035008.
  • Shang J, Noonan DP, Payne C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery. IEEE International Conference on Robotics and Automation (ICRA) 2011; 1147–1152
  • Thakkar S, Awad M, Gurram KC, et al. A novel, new robotic platform for natural orifice distal pancreatectomy. Surg Innov. 2015;22:274–282.
  • Seow CM, Chin WJ, Nelson CA, et al. Articulated manipulator with multiple instruments for natural orifice transluminal endoscopic surgery. ASME J Med Devices. 2013;7:041004.
  • Shen T, Nelson C, Warburton K, et al. Design and analysis of a novel articulated drive mechanism for multifunctional NOTES Robot. ASME J Mech Robotics. 2015;7(1):011004.
  • Spaun GO, Zheng B, Swanstrom LL. A multitasking platform for natural orifice translumenal endoscopic surgery (NOTES): a benchtop comparison of a new device for flexible endoscopic surgery and a standard dual-channel endoscope. Surg Endosc. 2009;23:2720–2727.
  • Ikeda K, Sumiyama K, Tajiri H, et al. Evaluation of a new multitasking platform for endoscope full-thickness resection. Gastrointest Endosc. 2011;73(1):117–122.
  • Thompson CC, Ryou M, Soper NJ, et al. Evaluation of a manually driven, multitasking platform for complex endolumenal and natural orifice translumenal endoscopic surgery applications (with video). Gastrointest Endosc. 2009;70(1):121–125.
  • Spaun GO, Zheng B, Martinec DV, et al. Bimanual coordination in natural orifice translumenal endoscopic surgery: comparing the conventional dual-channel endoscope, the R-scope, and a novel direct-drive system. Gastrointest Endosc. 2009;69(6):e39–45.
  • Bardaro SJ, Swanstrom LL. Develeopment of advanced endoscopes for natural orifice translumenal endoscopic surgery (NOTES). Minimally Invasive Ther. 2006;15(6):378–383.
  • Rex DK, Khashab M, Raju. Insertability and safety of a shapelocking device for colonoscopy. Am J Gastroenterol. 2005;100:817–820.
  • Raju GS, Pasricha PJ. ShapeLock: a rapid access port for redeployment of a colonoscope into the proximal colon to facilitate multiple polypectomies in a single session. Gastrointest Endosc. 2005;61:768–770.
  • Yamashita H, Matsumiya K, Masamune K, et al. Miniature bending manipulator for fetoscopic intrauterine laser therapy in twin-to-twin transfusion syndrome. Surg Endosc. 2007;22(2):430–435.
  • Zuo S, Hughes M, Yang GZ. Novel balloon surface scanning device for intraoperative breast endomicroscopy. Ann Biomed Eng. 2016;44(7):2313–2326.
  • Kobayashi Y, Sekiguchi Y, Noguchi T, et al. Development of a robotic system with six-degrees-offreedom robotic tool manipulators for single-port surgery. Int J Med Robot. 2015;11:235–246.
  • Zuo S, Hughes M, Seneci C, et al. Towards intraoperative breast endomicroscopy with a novel surface scanning device. IEEE Trans Biomed Eng. 2015;62(12):2941–2952.
  • Nageotte F, Zanne P, Doignon C, et al. Stitching planning in laparoscopic surgery: towards robot-assisted suturing. Int J Rob Res. 2009;28(10):1303–1321.
  • Cerveri P, Zazzarini CC, Patete P, et al. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation. Med Eng Phys. 2014;36:684–693.
  • Petterssona A, Davisb S, Grayb JO, et al. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J Food Eng. 2010;98(3):332–338.
  • Schubert BE, Floreano D. Variable stiffness material based on rigid low -melting-point-alloy microstructures embedded in soft poly (dimethylsiloxane) (PDMS). Rsc Advances. 2013;3(46):24671–24679.
  • Shan WL, Lu T, Majidi C. Soft-matter composites with electrically tunable elastic rigidity. Smart Materials and Structures. 2013;22(8):085005.
  • Cheng N, Ishigami G, Hawthorne S, et al. Design and Analysis of a Soft Mobile Robot Composed of Multiple Thermally Activated Joints Driven by a Single Actuator. 2010 IEEE International Conference on Robotics and Automation Anchorage Convention District. Anchorage, Alaska, USA: May 2010. p. 3–8.
  • Cheng N, Gopinath A, Wang L, et al. Thermally tunable, self-healing composites for soft robotic applications. Macromol Mater Eng. 2014;299:1279–1284.
  • Zhang GK, Wang SX, Lin JM, et al. Prototype design of flexi-hand for single incision laparoscopic surgery. The hamlyn symposium on medical Robot. Magma (New York, N.Y.). 2014;27:53–54.
  • Kesner SB, Howe RD Force control of flexible catheter robots for beating heart surgery. In: IEEE International Conference on Robotics and Automation, 2011.p. 1589–1594
  • Becker BC, Voros S, Maclachlan RA, et al. Active guidance of a handheld micromanipulator using visual servoing. In: IEEE International Conference on Robotics and Automation, 2009. p. 339–344
  • Melo R, Barreto JP, Falcão G. A new solution for camera calibration and real-time image distortion correction in medical endoscopyinitial technical evaluation. IEEE Trans Biomed Eng. 2012;59:634–644.
  • Um SH, Kim CD, Ryu HS, et al. Feasibility of obtaining quantitative 3-dimensional information using conventional endoscope: a pilot study. Clin Endosc. 2012;45:182–188.
  • Puerto-Souza GA, Mariottini GL. A fast and accurate featurematching algorithm for minimally-invasive endoscopic images. IEEE Trans Med Imaging. 2013;32:1201–1214.
  • Chang PL, Stoyanov D, Davison AJ, et al. Real-time dense stereo reconstruction using convex optimisation with a cost-volume for image-guided robotic surgery. Med Image Comput Comput Assist Interv. 2013;16:42–49.
  • Vercauteren T, Perchant A, Malandain G, et al. Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy. Medical Image Analysis. 2006;10:673–692.
  • Mirota DJ, Ishii M, Hager GD. Vision-based navigation in imageguided interventions. Annu Rev Biomed Eng. 2011;13:297–319.
  • Tearney GJ, Brezinski ME, Bouma BE, et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science. 1997;276(5321):2037–2039.
  • Goetz M. Confocal laser endomicroscopy: applications in clinical and translational science—a comprehensive review. ISRN Pathology. 2012; 2012:387145.
  • Park YL, Chang Ryu S, Black RJ, et al. Exoskeletal force-sensing end-effectors with embedded optical fiber-bragg-grating sensors. IEEE Trans Robot. 2009;25(6):1319–1331.
  • Mountney P, Giannarou S, Elson D, et al. Optical biopsy mapping for minimally invasive cancer screening. International Conference on Medical Image Computing and Computer Aided Intervention, London, UK, Lecture Notes in Computer Science 2009; 5761:483–490.
  • Dogramadzi S, Allen CR, Bell GD, et al. Computer controlled colonoscopy. IEEE Proc Instrumentation Measurement Technology. 1998;1:210–213.
  • Sadjadi H, Hashtrudi-Zaad K, Fichtinger G. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study. IEEE Trans Biomed Eng. 2013;60(10):2706–2715.
  • Roesthuis RJ, Janssen S, Misra S On using an array of fiber bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013. p. 2545–2551
  • Zhang L, Qian J, Shen L, et al. FBG sensor devices for spatial shape detection of intelligent colonoscope. IEEE International Conference on Robotics and Automation. J Korean Med Sci. 2004;19:834–840.
  • Ryu SC, Dupont PE FBG-based shape sensing tubes for continuum robots. IEEE International Conference on Robotics and Automation, 2014, p.3531–3537
  • Ginhoux R, Gangloff J, de Mathelin M, et al. Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans Rob. 2005;21(1):67–79.
  • Yuen SG, Perrin DP, Vasilyev NV, et al. Force tracking with feed-forward motion estimation for beating heart surgery. IEEE Trans Rob. 2010;26:888–896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.