422
Views
41
CrossRef citations to date
0
Altmetric
Review

Emerging point-of-care technologies for sickle cell disease screening and monitoring

, , , , , , , & show all
Pages 1073-1093 | Received 25 Jul 2016, Accepted 25 Oct 2016, Published online: 22 Nov 2016

References

  • Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. The Yale Journal of Biology and Medicine. 2001;74(3):179–184.
  • Pauling L, Itano HA, Singer SJ, et al. Sickle cell anemia, a molecular disease. Science. 1949;109(2835):443.
  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–487.
  • Ballas SK. The cost of health care for patients with sickle cell disease. Am J Hematol. 2009;84(6):320–322.
  • Kauf TL, Coates TD, Huazhi L, et al. The cost of health care for children and adults with sickle cell disease. Am J Hematol. 2009;84(6):323–327.
  • Ballas SK, Mohandas N. Sickle red cell microrheology and sickle blood rheology. Microcirculation. 2004;11(2):209–225.
  • Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337(11):762–769.
  • Alapan Y, Icoz K, Gurkan UA. Micro- and nanodevices integrated with biomolecular probes. Biotechnol Adv. 2015;33(8):1727–1743.
  • Unal M, Alapan Y, Jia H, et al. Micro and nano-scale technologies for cell mechanics. Nanobiomedicine. 2014;1(5):1–29.
  • Piel FB, Patil AP, Howes RE, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381(9861):142–151.
  • The state of sickle cell disease: 2016 report. American Society of Hematology, Washington DC, USA; 2016.
  • Diallo D, Tchernia G. Sickle cell disease in Africa. Curr Opin Hematol. 2002;9(2):111–116.
  • Diallo DA. Sickle cell disease in Africa: current situation and strategies for improving the quality and duration of survival. Bull Acad Natl Med. 2008;192(7):1361–1372; discussion 1372–1363.
  • Grosse SD, Odame I, Atrash HK, et al. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am J Prev Med. 2011;41(6 Suppl 4):S398–S405.
  • Tewari S, Rees D. Morbidity pattern of sickle cell disease in India: a single centre perspective. Indian J Med Res. 2013;138(3):288–290.
  • Huttle A, Maestre GE, Lantigua R, et al. Sickle cell in Latin America and the United States [corrected]. Pediatr Blood Cancer. 2015;62(7):1131–1136.
  • Inheriting sickle cell anaemia - live well - NHS choices [Internet]. Leeds: National Health Services; 2016. [cited 2016]. Available from: http://www.nhs.uk
  • Jastaniah W. Epidemiology of sickle cell disease in Saudi Arabia. Ann Saudi Med. 2011;31(3):289–293.
  • Asnani MR, McCaw-Binns AM, Reid ME. Excess risk of maternal death from sickle cell disease in Jamaica: 1998-2007. Plos One. 2011;6(10):e26281.
  • Hebbel RP. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991;77(2):214–237.
  • Ferrone FA. Polymerization and sickle cell disease: a molecular view. Microcirculation. 2004;11(2):115–128.
  • Noguchi CT, Schechter AN. Sickle hemoglobin polymerization in solution and in cells. Annu Rev Biophys Biophys Chem. 1985;14:239–263.
  • Nash GB, Johnson CS, Meiselman HJ. Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. Blood. 1984;63(1):73–82.
  • Brandao MM, Fontes A, Barjas-Castro ML, et al. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur J Haematol. 2003;70(4):207–211.
  • Mohandas N, Evans E. Sickle erythrocyte adherence to vascular endothelium. Morphologic correlates and the requirement for divalent cations and collagen-binding plasma proteins. J Clin Invest. 1985;76(4):1605–1612.
  • Byun H, Hillman TR, Higgins JM, et al. Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomater. 2012;8(11):4130–4138.
  • Alapan Y, Little JA, Gurkan UA. Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Sci Rep. 2014;4:7173.
  • Alapan Y, Matsuyama Y, Little JA, et al. Dynamic deformability of sickle red blood cells in microphysiological flow. Technology. 2016;0(0):1–9.
  • Montes RA, Eckman JR, Hsu LL, et al. Sickle erythrocyte adherence to endothelium at low shear: role of shear stress in propagation of vaso-occlusion. Am J Hematol. 2002;70(3):216–227.
  • Hillery CA, Du MC, Montgomery RR, et al. Increased adhesion of erythrocytes to components of the extracellular matrix: isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin. Blood. 1996;87(11):4879–4886.
  • Kasschau MR, Barabino GA, Bridges KR, et al. Adhesion of sickle neutrophils and erythrocytes to fibronectin. Blood. 1996;87(2):771–780.
  • Bartolucci P, Brugnara C, Teixeira-Pinto A, et al. Erythrocyte density in sickle cell syndromes is associated with specific clinical manifestations and hemolysis. Blood. 2012;120(15):3136–3141.
  • Kaul DK, Finnegan EM, Barabino GA. Sickle red cell-endothelium interactions. Microcirculation. 2009;16(1):97–111.
  • Alapan Y, Kim C, Adhikari A, et al. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res. 2016;173:74–91.e8.
  • Kaul DK, Fabry ME, Windisch P, et al. Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest. 1983;72(1):22–31.
  • Lei H, Karniadakis GE. Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proc Natl Acad Sci U S A. 2013;110(28):11326–11330.
  • Manwani D, Frenette PS. Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Hematology Am Soc Hematol Educ Program. 2013;2013:362–369.
  • Ataga KI, Orringer EP. Hypercoagulability in sickle cell disease: a curious paradox. Am J Med. 2003;115(9):721–728.
  • Frenette PS. Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol. 2002;9(2):101–106.
  • Belcher JD, Marker PH, Weber JP, et al. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood. 2000;96(7):2451–2459.
  • Barabino GA, Wise RJ, Woodbury VA, et al. Inhibition of sickle erythrocyte adhesion to immobilized thrombospondin by von Willebrand factor under dynamic flow conditions. Blood. 1997;89(7):2560–2567.
  • Hofstra TC, Kalra VK, Meiselman HJ, et al. Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst. Blood. 1996;87(10):4440–4447.
  • Wick TM, Moake JL, Udden MM, et al. Unusually large von Willebrand factor multimers preferentially promote young sickle and nonsickle erythrocyte adhesion to endothelial cells. Am J Hematol. 1993;42(3):284–292.
  • Kaul DK, Nagel RL. Sickle cell vasoocclusion: many issues and some answers. Experientia. 1993;49(1):5–15.
  • Mohandas N, Evans E. Rheological and adherence properties of sickle cells. Potential contribution to hematologic manifestations of the disease. Ann N Y Acad Sci. 1989;565:327–337.
  • Wick TM, Moake JL, Udden MM, et al. Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J Clin Invest. 1987;80(3):905–910.
  • Hebbel RP, Visser MR, Goodman JL, et al. Potentiated adherence of sickle erythrocytes to endothelium infected by virus. J Clin Invest. 1987;80:1503–1506.
  • Hebbel RP, Boogaerts MA, Eaton JW, et al. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med. 1980;302(18):992–995.
  • Whelihan MF, Mooberry MJ, Zachary V, et al. The contribution of red blood cells to thrombin generation in sickle cell disease: meizothrombin generation on sickled red blood cells. J Thromb Haemost. 2013;11(12):2187–2189.
  • Lim MY, Ataga KI, Key NS. Hemostatic abnormalities in sickle cell disease. Curr Opin Hematol. 2013;20(5):472–477.
  • Hofrichter J, Ross PD, Eaton WA. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A. 1974;71(12):4864–4868.
  • Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–1644.
  • Hebbel RP, Eaton JW, Steinberg MH, et al. Erythrocyte/endothelial interactions and the vasocclusive severity of sickle cell disease. Prog Clin Biol Res. 1981;55:145–162.
  • Barabino GA, McIntire LV, Eskin SG, et al. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood. 1987;70(1):152–157.
  • Barabino GA, McIntire LV, Eskin SG, et al. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease. Prog Clin Biol Res. 1987;240:113–127.
  • Kaul DK, Fabry ME, Nagel RL. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci U S A. 1989;86(9):3356–3360.
  • Turhan A, Weiss LA, Mohandas N, et al. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A. 2002;99(5):3047–3051.
  • Matsui NM, Borsig L, Rosen SD, et al. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood. 2001;98(6):1955–1962.
  • Matsui NM, Varki A, Embury SH. Heparin inhibits the flow adhesion of sickle red blood cells to P-selectin. Blood. 2002;100(10):3790–3796.
  • Hebbel RP. Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest. 1997;100(11):S83–S86.
  • Ballas SK, Smith ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood. 1992;79(8):2154–2163.
  • Hillery CA, Du MC, Wang WC, et al. Hydroxyurea therapy decreases the in vitro adhesion of sickle erythrocytes to thrombospondin and laminin. Br J Haematol. 2000;109(2):322–327.
  • Styles LA, Lubin B, Vichinsky E, et al. Decrease of very late activation antigen-4 and CD36 on reticulocytes in sickle cell patients treated with hydroxyurea. Blood. 1997;89(7):2554–2559.
  • Test ST, Hua M, Styles L. Decreased expression of integrin α4β1 and CD36 on circulating sickle reticulocytes and nucleated red cells following therapy with high dose erythropoietin. Blood. 1994;84(10, Suppl. 1):404a.
  • Setty BN, Kulkarni S, Dampier CD, et al. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood. 2001;97(9):2568–2573.
  • Setty BN, Kulkarni S, Stuart MJ. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood. 2002;99(5):1564–1571.
  • Frenette PS, Atweh GF. Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest. 2007;117(4):850–858.
  • Natarajan M, Udden MM, McIntire LV. Adhesion of sickle red blood cells and damage to interleukin-1 beta stimulated endothelial cells under flow in vitro. Blood. 1996;87(11):4845–4852.
  • Perelman N, Selvaraj SK, Batra S, et al. Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood. 2003;102(4):1506–1514.
  • Zennadi R, Chien A, Xu K, et al. Sickle red cells induce adhesion of lymphocytes and monocytes to endothelium. Blood. 2008;112(8):3474–3483.
  • Stone PC, Stuart J, Nash GB. Effects of density and of dehydration of sickle cells on their adhesion to cultured endothelial cells. Am J Hematol. 1996;52(3):135–143.
  • Kaul DK, Nagel RL, Chen D, et al. Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion. Blood. 1993;81(9):2429–2438.
  • Brittain HA, Eckman JR, Swerlick RA, et al. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood. 1993;81(8):2137–2143.
  • Sugihara K, Sugihara T, Mohandas N, et al. Thrombospondin mediates adherence of CD36+sickle reticulocytes to endothelial cells. Blood. 1992;80(10):2634–2642.
  • Finnegan EM, Turhan A, Golan DE, et al. Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion. Am J Hematol. 2007;82(4):266–275.
  • Solovey A, Lin Y, Browne P, et al. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med. 1997;337(22):1584–1590.
  • Strijbos MH, Landburg PP, Nur E, et al. Circulating endothelial cells: a potential parameter of organ damage in sickle cell anemia? Blood Cells Mol Dis. 2009;43(1):63–67.
  • van Beem RT, Nur E, Zwaginga JJ, et al. Elevated endothelial progenitor cells during painful sickle cell crisis. Exp Hematol. 2009;37(9):1054–1059.
  • Jang J-E, Hod EA, Spitalnik SL, et al. CXCL1 and its receptor, CXCR2, mediate murine sickle cell vaso-occlusion during hemolytic transfusion reactions. J Clin Invest. 2011;121(4):1397–1401.
  • An X, Mohandas N. Disorders of red cell membrane. Br J Haematol. 2008;141(3):367–375.
  • Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood. 2008;112(10):3939–3948.
  • Lipowsky HH. Microvascular rheology and hemodynamics. Microcirculation. 2005;12(1):5–15.
  • Barabino GA, Platt MO, Kaul DK. Sickle cell biomechanics. Annu Rev Biomed Eng. 2010;12:345–367.
  • Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364(9442):1343–1360.
  • Hoover R, Rubin R, Wise G, et al. Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood. 1979;54(4):872–876.
  • Ballas SK, Larner J, Smith ED, et al. Rheologic predictors of the severity of the painful sickle cell crisis. Blood. 1988;72(4):1216–1223.
  • Taylor J, Nolan VG, Mendelsohn L, et al. Chronic hyper-hemolysis in sickle cell anemia: association of vascular complications and mortality with less frequent vasoocclusive pain. PLoS One. 2008;3(5):e2095.
  • Bensinger TA, Gillette PN. Hemolysis in sickle cell disease. Arch Intern Med. 1974;133(4):624–631.
  • Connes P, Coates TD. Autonomic nervous system dysfunction: implication in sickle cell disease. C R Biol. 2013;336(3):142–147.
  • Sangkatumvong S, Khoo MCK, Coates TD. Abnormal cardiac autonomic control in sickle cell disease following transient hypoxia. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1996–1999.
  • Sangkatumvong S, Khoo MCK, Kato R, et al. Peripheral vasoconstriction and abnormal parasympathetic response to sighs and transient hypoxia in sickle cell disease. Am J Respir Crit Care Med. 2011;184(4):474–481.
  • Hines PC, Zen Q, Burney SN, et al. Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood. 2003;101(8):3281–3287.
  • Maciaszek JL, Andemariam B, Huber G, et al. Epinephrine modulates BCAM/Lu and ICAM-4 expression on the sickle cell trait red blood cell membrane. Biophys J. 2012;102(5):1137–1143.
  • Reiter CD, Wang X, Tanus-Santos JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–1389.
  • Kato GJ, McGowan V, Machado RF, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107(6):2279–2285.
  • Jison ML, Gladwin MT. Hemolytic anemia-associated pulmonary hypertension of sickle cell disease and the nitric oxide/arginine pathway. Am J Respir Crit Care Med. 2003;168(1):3–4.
  • Chen G, Zhang D, Fuchs TA, et al. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123(24):3818–3827.
  • Belcher JD, Chen C, Nguyen J, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123(3):377–390.
  • Telen MJ. Erythrocyte adhesion receptors: blood group antigens and related molecules. Transfus Med Rev. 2005;19(1):32–44.
  • El Nemer W, Wautier M-P, Rahuel C, et al. Endothelial Lu/BCAM glycoproteins are novel ligands for red blood cell alpha4beta1 integrin: role in adhesion of sickle red blood cells to endothelial cells. Blood. 2007;109(8):3544–3551.
  • Brown MD, Wick TM, Eckman JR. Activation of vascular endothelial cell adhesion molecule expression by sickle blood cells. Pediatr Pathol Mol Med. 2001;20(1):47–72.
  • Johnson C, Telen MJ. Adhesion molecules and hydroxyurea in the pathophysiology of sickle cell disease. Haematologica. 2008;93(4):481–485.
  • Wick TM, Eckman JR. Molecular basis of sickle cell-endothelial cell interactions. Curr Opin Hematol. 1996;3(2):118–124.
  • Swerlick RA, Eckman JR, Kumar A, et al. Alpha 4 beta 1-integrin expression on sickle reticulocytes: vascular cell adhesion molecule-1-dependent binding to endothelium. Blood. 1993;82(6):1891–1899.
  • Joneckis CC, Ackley RL, Orringer EP, et al. Integrin α4β1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood. 1993;82(12):3548–3555.
  • Zennadi R, Moeller BJ, Whalen EJ, et al. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood. 2007;110(7):2708–2717.
  • De Jong K, Larkin SK, Styles LA, et al. Characterization of the phosphatidylserine-exposing subpopulation of sickle cells. Blood. 2001;98(3):860–867.
  • Kuypers FA, Lewis RA, Hua M, et al. Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood. 1996;87(3):1179–1187.
  • Hines PC, Krishnamoorthy S, White J, et al. Natalizumab blocks VLA-4 mediated red blood cell adhesion and is a potential therapy for sickle cell disease. Blood. 2014;124(21):221–221.
  • De Castro LM, Zennadi R, Jonassaint JC, et al. Effect of propranolol as antiadhesive therapy in sickle cell disease. Clin Transl Sci. 2012;5(6):437–444.
  • Zennadi R, Hines PC, De Castro LM, et al. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood. 2004;104(12):3774–3781.
  • Delahunty M, Zennadi R, Telen MJ. LW protein: a promiscuous integrin receptor activated by adrenergic signaling. Transfus Clin Biol. 2006;13(1–2):44–49.
  • Finnegan EM, Barabino GA, Liu X-D, et al. Small-molecule cyclic alpha V beta 3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vasoocclusion. Am J Physiol Heart Circ Physiol. 2007;293(2):H1038–H1045.
  • Alshaiban A, Muralidharan-Chari V, Nepo A, et al. Modulation of sickle red blood cell adhesion and its associated changes in biomarkers by sulfated nonanticoagulant heparin derivative. Clin Appl Thromb Hemost. 2016;22(3):230-238.
  • Kutlar A, Ataga KI, McMahon L, et al. A potent oral P-selectin blocking agent improves microcirculatory blood flow and a marker of endothelial cell injury in patients with sickle cell disease. Am J Hematol. 2012;87(5):536–539.
  • Kutlar A, Embury SH. Cellular adhesion and the endothelium: P-selectin. Hematol Oncol Clin North Am. 2014;28(2):323–339.
  • Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–15885.
  • Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144.
  • Vichinsky EP, Styles LA, Colangelo LH, et al. Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative study of sickle cell disease. Blood. 1997;89(5):1787–1792.
  • Hassell KL, Eckman JR, Lane PA. Acute multiorgan failure syndrome: a potentially catastrophic complication of severe sickle cell pain episodes. Am J Med. 1994;96(2):155–162.
  • Ataga KI, Reid M, Ballas SK, et al. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol. 2011;153(1):92–104.
  • Lamarre Y, Romana M, Lemonne N, et al. Alpha thalassemia protects sickle cell anemia patients from macro-albuminuria through its effects on red blood cell rheological properties. Clin Hemorheol Microcirc. 2014;57(1):63–72.
  • Billett HH, Kim K, Fabry ME, et al. The percentage of dense red cells does not predict incidence of sickle cell painful crisis. Blood. 1986;68(1):301–303.
  • Billett HH, Nagel RL, Fabry ME. Paradoxical increase of painful crises in sickle cell patients with alpha-thalassemia. Blood. 1995;86(11):4382.
  • Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003;102(7):2678–2683.
  • Setty BN, Key NS, Rao AK, et al. Tissue factor-positive monocytes in children with sickle cell disease: correlation with biomarkers of haemolysis. Br J Haematol. 2012;157(3):370–380.
  • Kaul DK, Hebbel RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. J Clin Invest. 2000;106(3):411–420.
  • Chang J, Shi PA, Chiang EY, et al. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood. 2008;111(2):915–923.
  • Miller ST, Sleeper LA, Pegelow CH, et al. Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med. 2000;342(2):83–89.
  • Wongtong N, Jones S, Deng Y, et al. Monocytosis is associated with hemolysis in sickle cell disease. Hematology. 2015;20:593–597.
  • Elmariah H, Garrett ME, De Castro LM, et al. Factors associated with survival in a contemporary adult sickle cell disease cohort. Am J Hematol. 2014;89(5):530–535.
  • Anyaegbu CC, Okpala IE, Akren’Ova YA, et al. Peripheral blood neutrophil count and candidacidal activity correlate with the clinical severity of sickle cell anaemia (SCA). Eur J Haematol. 1998;60(4):267–268.
  • Okpala I. Leukocyte adhesion and the pathophysiology of sickle cell disease. Curr Opin Hematol. 2006;13(1):40–44.
  • Eaton WA, Hofrichter J. The biophysics of sickle cell hydroxyurea therapy. Science. 1995;268(5214):1142–1143.
  • Hidalgo A, Chang J, Jang J-E, et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009;15(4):384–391.
  • Telen MJ, Wun T, McCavit TL, et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125(17):2656–2664.
  • Chang J, Patton JT, Sarkar A, et al. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood. 2010;116(10):1779–1786.
  • Xu H, Wandersee NJ, Guo YH, et al. HMGB1 release and TLR4-mediated inflammation in sickle cell disease at baseline and during acute vaso-occlusive crisis. Blood. 2013;122(21):181–181.
  • Keleku-Lukwete N, Suzuki M, Otsuki A, et al. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proc Natl Acad Sci U S A. 2015;112(39):12169–12174.
  • Inwald DP, Kirkham FJ, Peters MJ, et al. Platelet and leucocyte activation in childhood sickle cell disease: association with nocturnal hypoxaemia. Br J Haematol. 2000;111(2):474–481.
  • Hebbel RP, Osarogiagbon R, Kaul D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation. 2004;11(2):129–151.
  • Fadlon E, Vordermeier S, Pearson TC, et al. Blood polymorphonuclear leukocytes from the majority of sickle cell patients in the crisis phase of the disease show enhanced adhesion to vascular endothelium and increased expression of CD64. Blood. 1998;91(1):266–274.
  • Bowers AS, Reid HL, Greenidge A, et al. Blood viscosity and the expression of inflammatory and adhesion markers in homozygous sickle cell disease subjects with chronic leg ulcers. PLoS One. 2013;8(7):e68929.
  • Benkerrou M, Delarche C, Brahimi L, et al. Hydroxyurea corrects the dysregulated L-selectin expression and increased H(2)O(2) production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood. 2002;99(7):2297–2303.
  • Moncada S, Radomski MW, Palmer RMJ. Endothelium-derived relaxing factor: identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol. 1988;37(13):2495–2501.
  • Belhassen L, Pelle G, Sediame S, et al. Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress-mediated vasodilation. Blood. 2001;97(6):1584–1589.
  • Mack AK, Kato GJ. Sickle cell disease and nitric oxide: a paradigm shift? Int J Biochem Cell Biol. 2006;38(8):1237–1243.
  • Graido-Gonzalez E, Doherty JC, Bergreen EW, et al. Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood. 1998;92(7):2551–2555.
  • Zhang D, Xu C, Manwani D, et al. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–809.
  • Proença-Ferreira R, Brugnerotto AF, Garrido VT, Endothelial activation by platelets from sickle cell anemia patients. PLoS One. 2014;9(2):e89012.
  • Bandeira ICJ, Rocha LBS, Barbosa MC, et al. Chronic inflammatory state in sickle cell anemia patients is associated with HBB(*)S haplotype. Cytokine. 2014;65(2):217–221.
  • Lanaro C, Franco-Penteado CF, Albuqueque DM, et al. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol. 2009;85(2):235–242.
  • Awogu AU. Leucocyte counts in children with sickle cell anaemia usefulness of stable state values during infections. West Afr J Med. 2000;19(1):55–58.
  • Okpala I. The intriguing contribution of white blood cells to sickle cell disease - a red cell disorder. Blood Rev. 2004;18(1):65–73.
  • Wun T, Cordoba M, Rangaswami A, et al. Activated monocytes and platelet-monocyte aggregates in patients with sickle cell disease. Clin Lab Haematol. 2002;24(2):81–88.
  • Wallace KL, Marshall MA, Ramos SI, et al. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood. 2009;114(3):667–676.
  • Field JJ, Nathan DG, Linden J. Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol. 2011;140(2):177–183.
  • Gulbis B, Cotton F, Ferster A, et al. Neonatal haemoglobinopathy screening in Belgium. J Clin Pathol. 2009;62(1):49–52.
  • Le PQ, Ferster A, Cotton F, et al. Sickle cell disease from Africa to Belgium, from neonatal screening to clinical management. Med Trop (Mars). 2010;70(5–6):467–470.
  • Gulbis B. Sickle cell disease: A global health issue. Sickle cell disease in focus conference 2016. June 2-3; Washington DC.
  • Odame I. Perspective: we need a global solution. Nature. 2014;515(7526):S10.
  • Engert A, Balduini C, Brand A, et al. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica. 2016;101(2):115–208.
  • Aguilar Martinez P, Angastiniotis M, Eleftheriou A, et al. Haemoglobinopathies in Europe: health & migration policy perspectives”. Orphanet J Rare Dis. 2014;9:97.
  • Sickle-cell disease in the African region: current situation and the way forward. AFR/RC56/17. World Health Organization Regional Committee for Africa; Addis Adaba, Ethiopia. 2006.
  • Bain BJ. Haemoglobinopathy diagnosis. Malden (MA): Blackwell; 2006.
  • Bain BJ, Wild B, Stephens A, et al. Variant haemoglobins: a guide to identification. Oxford (UK): Wiley-Blackwell; 2011.
  • Sickle-cell disease: a strategy for the WHO African region: report of the regional director. AFR/RC60/8. World Health Organization Regional Office for Africa; Geneva, Switzerland. 2010.
  • Ansong D, Akoto AO, Ocloo D, et al. Sickle cell disease: management options and challenges in developing countries. Mediterr J Hematol Infect Dis. 2013;5(1):e2013062.
  • Cober MP, Phelps SJ. Penicillin prophylaxis in children with sickle cell disease. J Pediatr Pharmacol Ther. 2010;15(3):152–159.
  • McGann PT, Nero AC, Ware RE. Current management of sickle cell anemia. Cold Spring Harb Perspect Med. 2013;3(8):a011817.
  • Mulumba LL, Wilson L. Sickle cell disease among children in Africa: an integrative literature review and global recommendations. Int J Africa Nurs Sci. 2015;3:56–64.
  • Berg AO. Sickle cell disease: screening, diagnosis, management, and counseling in newborns and infants. The Agency for Health Care Policy and Research. J Am Board Fam Pract. 1994;7(2):134–140.
  • Interpretation of newborn hemoglobin screening results. Michigan Department of Health & Human Services; Lansing, MI; 2013.
  • Greene DN, Vaughn CP, Crews BO, et al. Advances in detection of hemoglobinopathies. Clin Chim Acta. 2015;439:50–57.
  • Makani J, Ofori-Acquah SF, Nnodu O, et al. Sickle cell disease: new opportunities and challenges in Africa. ScientificWorldJournal. 2013;2013:1–16.
  • Clark BE, Thein SL. Molecular diagnosis of haemoglobin disorders. Clin Lab Haematol. 2004;26(3):159–176.
  • Yang X, Kanter J, Piety NZ, et al. A simple, rapid, low-cost diagnostic test for sickle cell disease. Lab on a Chip. 2013;13(8):1464–1467.
  • Yang X, Piety NZ, Vignes SM, et al. Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin Chem. 2013;59(10):1506–1513.
  • Piety NZ, Yang X, Lezzar D, et al. A rapid paper-based test for quantifying sickle hemoglobin in blood samples from patients with sickle cell disease. Am J Hematol. 2015;90(6):478–482.
  • Piety NZ, Yang X, Kanter J, et al. Validation of a low-cost paper-based screening test for sickle cell anemia. PLoS One. 2016;11(1):e0144901.
  • Kanter J, Telen MJ, Hoppe C, et al. Validation of a novel point of care testing device for sickle cell disease. BMC Med. 2015;13:225.
  • McGann PT, Schaefer BA, Paniagua M, et al. Characteristics of a rapid, point-of-care lateral flow immunoassay for the diagnosis of sickle cell disease. Am J Hematol. 2016;91(2):205–210.
  • Quinn CT, Paniagua MC, DiNello RK, et al. A rapid, inexpensive and disposable point-of-care blood test for sickle cell disease using novel, highly specific monoclonal antibodies. Br J Haematol. 2016. doi:10.1111/bjh.14298
  • Kumar AA, Patton MR, Hennek JW, et al. Density-based separation in multiphase systems provides a simple method to identify sickle cell disease. Proc Natl Acad Sci U S A. 2014;111(41):14864–14869.
  • Ung R, Alapan Y, Hasan MN, et al. Point-of-care screening for sickle cell disease by a mobile micro-electrophoresis platform. Blood. 2015;126(23):3379–3379.
  • Powars DR, Chan LS, Hiti A, et al. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine (Baltimore). 2005;84(6):363–376.
  • Nouraie M, Lee JS, Zhang Y, et al. The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica. 2013;98(3):464–472.
  • Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–294.
  • West MS, Wethers D, Smith J, et al. Laboratory profile of sickle cell disease: a cross-sectional analysis. The cooperative study of sickle cell disease. J Clin Epidemiol. 1992;45(8):893–909.
  • Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia [see comments]. N Engl J Med. 1995;332(20):1317–1322.
  • Lorch D, Spevack D, Little J. An elevated estimated pulmonary arterial systolic pressure, whenever measured, is associated with excess mortality in adults with sickle cell disease. Acta Haematol. 2011;125(4):225–229.
  • Lettre G, Sankaran VG, Bezerra MAC, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008;105(33):11869–11874.
  • Milton JN, Rooks H, Drasar E, et al. Genetic determinants of haemolysis in sickle cell anaemia. Br J Haematol. 2013;161(2):270–278.
  • Bae HT, Baldwin CT, Sebastiani P, et al. Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood. 2012;120(9):1961–1962.
  • Milton JN, Sebastiani P, Solovieff N, et al. A genome-wide association study of total bilirubin and cholelithiasis risk in sickle cell anemia. PLoS One. 2012;7(4):e34741.
  • Manwani D, Chen G, Carullo V, et al. Single-dose intravenous gammaglobulin can stabilize neutrophil Mac-1 activation in sickle cell pain crisis. Am J Hematol. 2015;90(5):381–385.
  • Manwani D, Chen G, Carullo V, et al. Vaso-occlusion-promoting neutrophil Mac-1 integrin activation in human sickle cell crises is stabilized by a single dose of intravenous gammaglobulin. Blood. 2014;124(21):4089–4089.
  • Field JJ, Lin G, Okam MM, et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood. 2013;121(17):3329–3334.
  • Lanzkron S, Strouse JJ, Wilson R, et al. Systematic review: hydroxyurea for the treatment of adults with sickle cell disease. Ann Intern Med. 2008;148(12):939–955.
  • Zimmerman SA, Schultz WH, Davis JS, et al. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood. 2004;103(6):2039–2045.
  • Hydroxyurea for the treatment of sickle cell disease. Agency for Healthcare Research and Quality. Rockville, MD; 2008 Feb.
  • Rodgers GP, Dover GJ, Noguchi CT, et al. Hematologic responses of patients with sickle-cell disease to treatment with hydroxyurea. N Engl J Med. 1990;322(15):1037–1045.
  • Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018–2031.
  • McGann PT, Ware RE. Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain? Curr Opin Hematol. 2011;18(3):158–165.
  • Ware RE, Eggleston B, Redding-Lallinger R, et al. Predictors of fetal hemoglobin response in children with sickle cell anemia receiving hydroxyurea therapy. Blood. 2002;99(1):10–14.
  • Halsey C, Roberts IAG. The role of hydroxyurea in sickle cell disease. Br J Haematol. 2003;120(2):177–186.
  • Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood. 2010;115(26):5300–5311.
  • Heeney MM, Ware RE. Hydroxyurea for children with sickle cell disease. Hematol Oncol Clin North Am. 2010;24(1):199–214.
  • Maier-Redelsperger M, De Montalembert M, Flahault A, et al. Fetal hemoglobin and F-cell responses to long-term hydroxyurea treatment in young sickle cell patients. The French Study Group on sickle cell disease. Blood. 1998;91(12):4472–4479.
  • Al-Anazi K. Hydroxyurea therapy in patients with sickle cell disease. Transl Med. 2015;5:145–150.
  • Steinberg MH. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. ScientificWorldJournal. 2008;8:1295–1324.
  • Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108(31–32):532–540.
  • Harmatz P, Butensky E, Quirolo K, et al. Severity of iron overload in patients with sickle cell disease receiving chronic red blood cell transfusion therapy. Blood. 2000;96(1):76–79.
  • Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364(9442):1343–1360.
  • Yang X, Reavis HD, Roberts CL, et al. Quantitative, point-of-care immunoassay platform to guide and monitor sickle cell disease therapy. Anal Chem. 2016;88(16):7904–7909.
  • Adams RJ, McKie VC, Brambilla D, et al. Stroke prevention trial in sickle cell anemia. Controlled Clin Trials. 1998;19(1):110–129.
  • Nagel RL, Vichinsky E, Shah M, et al. F reticulocyte response in sickle cell anemia treated with recombinant human erythropoietin: a double-blind study. Blood. 1993;81(1):9–14.
  • Strouse JJ, Heeney MM. Hydroxyurea for the treatment of sickle cell disease: efficacy, barriers, toxicity, and management in children. Pediatr Blood Cancer. 2012;59(2):365–371.
  • Howard J, Oteng-Ntim E. The obstetric management of sickle cell disease. Best Pract Res Clin Obstet Gynaecol. 2012;26(1):25–36.
  • Tuchin VV, Tárnok A, Zharov VP. In vivo flow cytometry: a horizon of opportunities. Cytometry A. 2011;79(10):737–745.
  • Morgan SP. Can new optical techniques for in vivo imaging and flow cytometry of the microcirculation benefit sickle cell disease research? Cytometry Part A. 2011;79A(10):766–774.
  • Galanzha EI, Zharov VP. In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters. Cytometry Part A. 2011;79A(10):746–757.
  • Barabino GA, Platt MO, Kaul DK. Sickle cell biomechanics. Annu Rev Biomed Eng. 2010;12:345–367.
  • Silva DGH, Belini E, Torres LD, et al. Relationship between oxidative stress, glutathione S-transferase polymorphisms and hydroxyurea treatment in sickle cell anemia. Blood Cells Mol Dis. 2011;47(1):23–28.
  • Ware RE, Despotovic JM, Mortier NA, et al. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia. Blood. 2011;118(18):4985–4991.
  • Sakhalkar VS, Rao SP, Weedon J, et al. Elevated plasma sVCAM-1 levels in children with sickle cell disease: impact of chronic transfusion therapy. Am J Hematol. 2004;76(1):57–60.
  • Kato GJ, Martyr S, Blackwelder WC, et al. Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. Br J Haematol. 2005;130(6):943–953.
  • Picot J, Goudot C, Berkenou J, et al. Flow cytometry analyses reveal association between Lu/BCAM adhesion molecule and osteonecrosis in sickle cell disease”. Am J Hematol. 2014;89(1):115–117.
  • Chaar V, Laurance S, Lapoumeroulie C, et al. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation. J Biol Chem. 2014;289(16):11512–11521.
  • Kim Y, Kim K, Park Y. Measurement techniques for red blood cell deformability: recent advances. In: Moschandreou TE, editor. Blood cell - An overview of studies in hematology. Rijeka (Croatia): INTECH; 2012. p 167–194.
  • Bacabac RG, Smit TH, Cowin SC, et al. Dynamic shear stress in parallel-plate flow chambers. J Biomech. 2005;38(1):159–167.
  • Yang Y, Koo S, Lin CS, et al. Specific binding of red blood cells to endothelial cells is regulated by nonadsorbing macromolecules. J Biol Chem. 2010;285(52):40489–40495.
  • Tasoglu S, Safaee H, Zhang X, et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small. 2013;9(20):3374–3384.
  • Rizvi I, Gurkan UA, Tasoglu S, et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A. 2013;110(22):E1974–E1983.
  • Gurkan UA, Moon S, Geckil H, et al. Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing. Biotechnol J. 2011;6(2):138–149.
  • Zhang X, Khimji I, Gurkan UA, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip. 2011;11(15):2535–2540.
  • Moon S, Gurkan UA, Blander J, et al. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients. PLoS ONE. 2011;6(7):e21409.
  • Gurkan UA, Anand T, Tas H, et al. Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip. 2011;11(23):3979–3989.
  • Gurkan UA, Tasoglu S, Akkaynak D, et al. Smart interface materials integrated with microfluidics for on-demand local capture and release of cells. Adv Healthc Mater. 2012;1(5):661–668.
  • Du E, Diez-Silva M, Kato GJ, et al. Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc Natl Acad Sci U S A. 2015;112(5):1422–1427.
  • Cohen SI, Mahadevan L. Hydrodynamics of hemostasis in sickle-cell disease. Phys Rev Lett. 2013;110(13):138104.
  • Higgins JM, Eddington DT, Bhatia SN, et al. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc Natl Acad Sci U S A. 2007;104(51):20496–20500.
  • Wood DK, Soriano A, Mahadevan L, et al. A biophysical indicator of vaso-occlusive risk in sickle cell disease. Sci Transl Med. 2012;4(123):123ra126.
  • Tsai M, Kita A, Leach J, et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin Invest. 2012;122(1):408–418.
  • Solovey AA, Solovey AN, Harkness J, et al. Modulation of endothelial cell activation in sickle cell disease: a pilot study. Blood. 2001;97(7):1937–1941.
  • Fiddes LK, Raz N, Srigunapalan S, et al. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials. 2010;31(13):3459–3464.
  • Myers DR, Sakurai Y, Tran R, et al. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J Vis Exp. 2012;(64):e3958.
  • Campo-Deano L, Dullens RP, Aarts DG, et al. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics. 2013;7(3):34102.
  • Little JA, Alapan Y, Gray KE, et al. SCD-biochip: a functional assay for red cell adhesion in sickle cell disease. Blood. 2014;124(21):4053–4053.
  • Ballas SK, Marcolina MJ. Hyperhemolysis during the evolution of uncomplicated acute painful episodes in patients with sickle cell anemia. Transfusion. 2006;46(1):105–110.
  • Stankovic Stojanovic K, Steichen O, Lefevre G, et al. High lactate dehydrogenase levels at admission for painful vaso-occlusive crisis is associated with severe outcome in adult SCD patients. Clin Biochem. 2012;45(18):1578–1582.
  • Hierso R, Waltz X, Mora P, et al. Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol. 2014;166(4):601–606.
  • Eaton WA, Hofrichter J, Ross PD. Editorial: delay time of gelation: a possible determinant of clinical severity in sickle cell disease. Blood. 1976;47(4):621–627.
  • Powars DR, Weiss JN, Chan LS, et al. Is there a threshold level of fetal hemoglobin that ameliorates morbidity in sickle cell anemia? Blood. 1984;63(4):921–926.
  • Brittenham GM, Schechter AN, Noguchi CT. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood. 1985;65(1):183–189.
  • Sewchand LS, Johnson CS, Meiselman HJ. The effect of fetal hemoglobin on the sickling dynamics of SS erythrocytes. Blood Cells. 1983;9:147–166.
  • Sickle cell disease and other hemoglobin disorders fact sheet. Geneva: World Health Organization; 2011.
  • Makani J, Cox SE, Soka D, et al. Mortality in sickle cell anemia in Africa: a prospective cohort study in Tanzania. PLoS One. 2011;6(2):e14699.
  • Okpala I. Investigational selectin-targeted therapy of sickle cell disease. Expert Opin Investig Drugs. 2015;24(2):229–238.
  • Telen MJ. Cellular adhesion and the endothelium: E-selectin, L-selectin, and pan-selectin inhibitors. Hematol Oncol Clin North Am. 2014;28(2):341–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.