705
Views
1
CrossRef citations to date
0
Altmetric
Review

Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions

, , , &
Pages 35-45 | Received 29 Sep 2017, Accepted 18 Dec 2017, Published online: 28 Dec 2017

References

  • Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012). Eur J Cardiothorac Surg. 2012;42(4):S1–44.
  • Arora S, Misenheimer JA, Ramaraj R. Transcatheter aortic valve replacement: comprehensive review and present status. Tex Heart Inst J. 2017;44(1):29–38.
  • Kenny DP, Hijazi ZM. Current status and future potential of transcatheter interventions in congenital heart disease. Circ Res. 2017;120(6):1015–1026.
  • Alsara O, Alsarah A, Laird-Fick H. Advanced age and the clinical outcomes of transcatheter aortic valve implantation. J Geriatr Cardiol. 2014;11(2):163–170.
  • Mack MJ, Leon MB, Smith CR, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2477–2484.
  • Kim SJ, Samad Z, Bloomfield GS, et al. A critical review of hemodynamic changes and left ventricular remodeling after surgical aortic valve replacement and percutaneous aortic valve replacement. Am Heart J. 2014;168(2):150–159.e151–157.
  • Yoon S-H, Schmidt T, Bleiziffer S, et al. Transcatheter aortic valve replacement in pure native aortic valve regurgitation. J Am Coll Cardiol. 2017;70(22):2752–2763.
  • Dasi LP, Simon HA, Sucosky P, et al. Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol. 2009;36(2):225–237.
  • Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–614.
  • Manji RA, Lee W, Cooper DK. Xenograft bioprosthetic heart valves: past, present and future. Int J Surg. 2015;23(Pt B):280–284.
  • Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failurel. Histopathology. 2009;55(2):135–144.
  • Petronio AS, Capranzano P, Barbato E, et al. Current status of transcatheter valve therapy in Europe: results from an EAPCI survey. Euro Interv. 2016;12(7):890–895.
  • Bezuidenhout D, Williams DF, Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials. 2015;36:6–25.
  • Sachweh JS, Daebritz SH. Novel “biomechanical” polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients? ASAIO J. 2006;52(5):575–580.
  • Ando M, Takahashi Y. Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J Thorac Cardiovasc Surg. 2009;137(1):124–131.
  • Daebritz SH, Fausten B, Hermanns B, et al. New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surg Forum. 2004;7(5):E525–532.
  • Leo HL, Simon H, Carberry J, et al. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann Biomed Eng. 2005;33(4):429–443.
  • Wheatley DJ, Raco L, Bernacca GM, et al. Polyurethane: material for the next generation of heart valve prostheses? Eur J Cardiothorac Surg. 2000;17(4):440–448.
  • Wang Q, McGoron AJ, Bianco R, et al. In-vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J Heart Valve Dis. 2010;19(4):499–505.
  • Claiborne TE, Sheriff J, Kuetting M, et al. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J Biomech Eng. 2013;135(2):021021.
  • Chester AH, El-Hamamsy I, Butcher JT, et al. The living aortic valve: from molecules to function. Global Cardiol Sci Practice. 2014;2014(1):52–77.
  • Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:1–15.
  • Ayoub S, Ferrari G, Gorman RC, et al. Heart valve biomechanics and underlying mechanobiology. Compr Physiol. 2016;6(4):1743–1780.
  • Fioretta ES, Dijkman PE, Emmert MY, et al. The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. J Tissue Eng Regen Med. 2017. [Epub ahead of print].
  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–926.
  • Wissing TB, Bonito V, Bouten CVC, et al. Biomaterial-driven in situ cardiovascular tissue engineering—a multi-disciplinary perspective. NPJ Regen Med. 2017;2(1):18.
  • Dijkman PE, Fioretta ES, Frese L, et al. Heart valve replacements with regenerative capacity. Transfus Med Hemotherapy. 2016;43(4):282–290.
  • Loon S, Smits AIPM, Driessen-Mol A, et al. The immune response in in situ tissue engineering of aortic heart valves. In: Aikawa E, editor. Calcific aortic valve disease. Rijeka: InTech; 2013. Chapter 08.
  • Williams DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol. 2006;24(1):4–8.
  • Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155–1172.
  • Kluin J, Talacua H, Smits AI, et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant - from material design to 12 months follow-up in sheep. Biomaterials. 2017;125:101–117.
  • Schmidt D, Achermann J, Odermatt B, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid–derived progenitor cells as single cell source. Circulation. 2007;116(11suppl):I-64-I-70.
  • Jana S, Tefft BJ, Spoon DB, et al. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014;10(7):2877–2893.
  • Hopkins R. From cadaver harvested homograft valves to tissue-engineered valve conduits. Prog Pediatr Cardiol. 2006;21(2):137–152.
  • Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev. 2014;20(6):683–696.
  • Li Y, Meng H, Liu Y, et al. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal. 2015;685690:2015.
  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–H56.
  • Duan J, Liang X, Cao Y, et al. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules. 2015;48(8):2706–2714.
  • Koshy ST, Desai RM, Joly P, et al. Click-crosslinked injectable gelatin hydrogels. Adv Healthc Mater. 2016;5(5):541–547.
  • Ye Q, Zund G, Benedikt P, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17(5):587–591.
  • Flanagan TC, Cornelissen C, Koch S, et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials. 2007;28(23):3388–3397.
  • Kim WG, Cho SK, Kang MC, et al. Tissue-engineered heart valve leaflets: an animal study. Int J Artif Organs. 2001;24(9):642–648.
  • Sodian R, Hoerstrup SP, Sperling JS, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation. 2000;102(19Suppl 3):Iii22–29.
  • Serruys PW, Miyazaki Y, Katsikis A, et al. Restorative valve therapy by endogenous tissue restoration: tomorrow’s world? Reflection on the EuroPCR 2017 session on endogenous tissue restoration. Euro Interv. 2017;13(AA):AA68–AA77.
  • Bockeria LA, Svanidze O, Kim A, et al. Total cavopulmonary connection with a new bioabsorbable vascular graft: first clinical experience. J Thorac Cardiovasc Surg. 2017;153(6):1542–1550.
  • Miyazaki Y, Soliman O, Abdelghani M, et al. Acute performance of a novel restorative transcatheter aortic valve: preclinical results. Eurointervention. 2017;13(12):e1410–1417.
  • Eslami M, Vrana NE, Zorlutuna P, et al. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. J Biomater Appl. 2014;29(3):399–410.
  • Capulli AK, Emmert MY, Pasqualini FS, et al. JetValve: rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials. 2017;133:229–241.
  • Hockaday LA, Kang KH, Colangelo NW, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3):035005.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011.
  • Hinderer S, Seifert J, Votteler M, et al. Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials. 2014;35(7):2130–2139.
  • Iop L, Gerosa G. Guided tissue regeneration in heart valve replacement: from preclinical research to first-in-human trials. Biomed Res Int. 2015;432901:2015.
  • Hoshiba T, Lu H, Kawazoe N, et al. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010;10(12):1717–1728.
  • Neumann A, Cebotari S, Tudorache I, et al. Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech (Berl). 2013;58(5):453–456.
  • Lisy M, Kalender G, Schenke-Layland K, et al. Allograft heart valves: current aspects and future applications. Biopreserv Biobank. 2017;15(2):148–157.
  • Lichtenberg A, Cebotari S, Tudorache I, et al. Flow-dependent re-endothelialization of tissue-engineered heart valves. J Heart Valve Dis. 2006;15(2):287–293; discussion 293–284.
  • Neumann A, Sarikouch S, Breymann T, et al. Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement. Tissue Eng Part A. 2014;20(5–6):1003–1011.
  • Sarikouch S, Horke A, Tudorache I, et al. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg. 2016;50(2):281–290.
  • Tudorache I, Horke A, Cebotari S, et al. Decellularized aortic homografts for aortic valve and aorta ascendens replacement. Eur J Cardiothorac Surg. 2016;50(1):89–97.
  • Sarikouch S, Haverich A, Pepper J, et al. Every like is not the same. J Thorac Cardiovasc Surg. 2017;153(6):1553–1555.
  • Helder MRK, Kouchoukos NT, Zehr K, et al. Late durability of decellularized allografts for aortic valve replacement: A word of caution. J Thorac Cardiovasc Surg. 2016;152(4):1197–1199.
  • Bloch O, Erdbrugger W, Volker W, et al. Extracellular matrix in deoxycholic acid decellularized aortic heart valves. Medl Sci Monit. 2012;18(12):Br487–492.
  • Hennessy RS, Go JL, Hennessy RR, et al. Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract. PloS One. 2017;12(8):e0181614.
  • Gallo M, Bonetti A, Poser H, et al. Decellularized aortic conduits: could their cryopreservation affect post-implantation outcomes? A morpho-functional study on porcine homografts. Heart Vessels. 2016;31(11):1862–1873.
  • Dohmen PM. Tissue engineered aortic valve. HSR Proc Intensive Care Cardiovasc Anesth. 2012;4(2):89–93.
  • Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg. 2003;23(6):1002–1006; discussion 1006.
  • Namiri M, Ashtiani MK, Mashinchian O, et al. Engineering natural heart valves: possibilities and challenges. J Tissue Eng Regen Med. 2017;11(5):1675–1683.
  • Hoerstrup SP, Sodian R, Daebritz S, et al. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102(19Suppl 3):Iii44–49.
  • Hoerstrup SP, Kadner A, Melnitchouk S, et al. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation. 2002;106(12 Suppl 1):1143–1150.
  • Syedain ZH, Bradee AR, Kren S, et al. Decellularized tissue-engineered heart valve leaflets with recellularization potential. Tissue Eng Part A. 2013;19(5–6):759–769.
  • Fahrenholtz M, Liu H, Kearney D, et al. Characterization of dermal fibroblasts as a cell source for pediatric tissue engineered heart valves. J Cardiovasc Dev Dis. 2014;1(2):146–162.
  • Syedain Z, Reimer J, Schmidt J, et al. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials. 2015;73:175–184.
  • Schmidt D, Dijkman PE, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol. 2010;56(6):510–520.
  • Dijkman PE, Driessen-Mol A, De Heer LM, et al. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. J Heart Valve Dis. 2012;21(5):670–678.
  • Dijkman PE, Driessen-Mol A, Frese L, et al. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials. 2012;33(18):4545–4554.
  • Driessen-Mol A, Emmert MY, Dijkman PE, et al. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol. 2014;63(13):1320–1329.
  • Schmitt B, Spriestersbach H, O H-Icí D, et al. Percutaneous pulmonary valve replacement using completely tissue-engineered off-the-shelf heart valves: six-month in vivo functionality and matrix remodelling in sheep. Euro Interv. 2016;12(1):62–70.
  • Loerakker S, Ristori T, Baaijens FP. A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J Mech Behav Biomed Mater. 2016;58:173–187.
  • Sanders B, Loerakker S, Fioretta ES, et al. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann Biomed Eng. 2016;44:1061–1071.
  • Emmert MY, Hoerstrup SP. Challenges in translating tissue engineered heart valves into clinical practice. Eur Heart J. 2017;38(9):619–621.
  • Emmert MY, Fioretta ES, Hoerstrup SP. Translational challenges in cardiovascular tissue engineering. J Cardiovasc Transl Res. 2017;10(2):139–149.
  • Emmert MY, Weber B, Behr L, et al. Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC Cardiovasc Interv. 2011;4(7):822–823.
  • Emmert MY, Weber B, Behr L, et al. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. Eur J Cardiothorac Surg. 2014;45(1):61–68.
  • Emmert MY, Weber B, Wolint P, et al. Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovasc Interv. 2012;5(8):874–883.
  • Emmert MY, Hoerstrup SP. Next generation heart valve substitutes. Eur Heart J. 2017;38(9):617–618.
  • Emmert MY, Hoerstrup SP. Regenerative transcatheter valves. Eur Heart J. 2017;38(36):2710–2713.
  • Weber B, Dijkman PE, Scherman J, et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013;34(30):7269–7280.
  • Weber B, Scherman J, Emmert MY, et al. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur Heart J. 2011;32(22):2830–2840.
  • Helder MRK, Stoyles NJ, Tefft BJ, et al. Xenoantigenicity of porcine decellularized valves. J Cardiothorac Surg. 2017;12(1):56.
  • Tudorache I, Calistru A, Baraki H, et al. Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Eng Part A. 2013;19(15–16):1686–1694.
  • Benichou G, Gonzalez B, Marino J, et al. Role of memory T cells in allograft rejection and tolerance. Front Immunol. 2017;8:170.
  • Reimer J, Syedain Z, Haynie B, et al. Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng. 2017;45(2):439–451.
  • Loerakker S, Argento G, Oomens CW, et al. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J Biomech. 2013;46(11):1792–1800.
  • Dodge-Khatami A, Hallhagen S, Limacher K, et al. Minimally invasive insertion of an equine stented pulmonary valve with a built-in sinus portion in a sheep model. Catheter Cardiovasc Interv. 2012;79(4):654–658.
  • Syedain Z, Reimer J, Lahti M, et al. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun. 2016;7:12951.
  • Hoerstrup SP, Cummings Mrcs I, Lachat M, et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation. 2006;114(1 Suppl):1159-–1166.
  • Chinchoy E, Soule CL, Houlton AJ, et al. Isolated four-chamber working swine heart model. Ann Thorac Surg. 2000;70(5):1607–1614.
  • De Weger A, Van Tuijl S, Stijnen M, et al. Images in cardiovascular medicine. Direct endoscopic visual assessment of a transcatheter aortic valve implantation and performance in the Physioheart, an isolated working heart platform. Circulation. 2010;121(13):e261–262.
  • Rose M, Rahman O, Schnell S, et al. 4D flow MRI demonstrates changes in cardiovascular haemodynamics in complex congenital heart disease. Eur Heart J Cardiovasc Imaging. 2017;18(1):114.
  • Vy P, Auffret V, Badel P, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int J Adv Eng Sci Appl Math. 2016;8(1):2–24.
  • Lawson JH, Glickman MH, Ilzecki M, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016;387(10032):2026–2034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.