624
Views
30
CrossRef citations to date
0
Altmetric
Review

A review of haptic simulator for oral and maxillofacial surgery based on virtual reality

&
Pages 435-444 | Received 13 Jan 2018, Accepted 01 Jun 2018, Published online: 14 Jun 2018

References

  • Andersson L, Kahnberg KE, Pogrel MA. Oral and maxillofacial surgery. Oxford: Wiley-Blackwell; 2010.
  • Stirling ERB, Lewis TL, Ferran NA. Surgical skills simulation in trauma and orthopaedic training. J Orthop Surg Res. 2014;9:126.
  • Torkington J, Smith SG, Rees BI, et al. The role of simulation in surgical training. Ann R Coll Surg Engl. 2000;82:88.
  • Marescaux J, Clément JM, Tassetti V, et al. Virtual reality applied to hepatic surgery simulation: the next revolution. Ann Surg. 1998;228:627.
  • Van der Meijden OAJ, Schijven MP. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc. 2009;23:1180–1190.
  • Chen X, Xu L, Sun Y, et al. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation. Expert Rev Med Devices. 2016;13:1043–1051.
  • Wang P, Becker AA, Jones IA, et al. A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback. Comput Methods Programs Biomed. 2006;84:11–18.
  • Basdogan C, Ho CH, Srinivasan MA. Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatron. 2001;6:269–285.
  • Singapogu RB, Smith DE, Long LO, et al. Objective differentiation of force-based laparoscopic skills using a novel haptic simulator. J Surg Educ. 2012;69:766–773.
  • Kühnapfel U, Cakmak HK, Maaß H. Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput Graph. 2000;24:671–682.
  • Banerjee PP, Luciano CJ, Lemole Jr GM, et al. Accuracy of ventriculostomy catheter placement using a head-and hand-tracked high-resolution virtual reality simulator with haptic feedback. J Neurosurg. 2007;107:515–521.
  • Gibson S, Samosky J, Mor A, et al. Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering and haptic feedback. Proc of CVRMed-MRCAS’97. Springer Berlin/Heidelberg; 1997. pp. 367–378.
  • Kusumoto N, Sohmura T, Yamada S, et al. Application of virtual reality force feedback haptic device for oral implant surgery. Clin Oral Implants Res. 2006;17:708–713.
  • Olsson P, Nysjö F, Hirsch JM, et al. A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases[J]. Int J Comput Assist Radiol Surg. 2013;8:887–894.
  • Csaszar GR, Niederdellmann H. Reliability of bimaxillary surgical planning with the 3-D orthognathic surgery simulator. Int J Adult Orthodon Orthognath Surg. 1999;15:51–58.
  • Koopman P, Buis J, Wesselink P, et al. Simodont, a haptic dental training simulator combined with courseware. Bio-Algorithms Med-Syst. 2010;6:117–122.
  • Bakr MM, Massey W, Alexander H. Evaluation of Simodont® Haptic 3D virtual reality dental training simulator. Int J Dent Clin. 2013;5(4):1–6.
  • Reddy-Kolanu G, Alderson D. Evaluating the effectiveness of the Voxel-Man TempoSurg virtual reality simulator in facilitating learning mastoid surgery. Ann Royal Coll Surg Engl. 2011;93:205–208.
  • Kolesnikov M, Zefran M, Steinberg AD, et al. PerioSim: haptic virtual reality simulator for sensorimotor skill acquisition in dentistry. Robotics and Automation, 2009. ICRA’09. IEEE International Conference on. IEEE; 2009. pp. 689–694.
  • Cormier J, Pasco D, Syllebranque C, et al. VirTeaSy a haptic simulator for dental education. 6th Int Conf Virtual Learn. 2011;156:61–68.
  • Delorme S, Laroche D, DiRaddo R, et al. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Oper Neurosurg. 2012;71:ons32–ons42.
  • Salisbury K, Conti F, Barbagli F. Haptic rendering: introductory concepts. IEEE Comput Graph Appl. 2004;24:24–32.
  • Delingette H. Toward realistic soft-tissue modeling in medical simulation. Proc IEEE. 1998;86:512–523.
  • Kadlecek P. Overview of current developments in haptic APIs. Proceedings of CESCG, 2011; 2011.
  • Sohmura T, Hojo H, Nakajima M, et al. Prototype of simulation of orthognathic surgery using a virtual reality haptic device. Int J Oral Maxillofac Surg. 2004;33:740–750.
  • Wanschitz F, Birkfellner W, Figl M, et al. Computer‐enhanced stereoscopic vision in a head‐mounted display for oral implant surgery. Clin Oral Implants Res. 2002;13:610–616.
  • Wu F, Chen X, Lin Y, et al. A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench. Int J Med Robot. 2014;10:78–87.
  • Pohlenz P, Gröbe A, Petersik A, et al. Virtual dental surgery as a new educational tool in dental school. J Cranio-Maxillofacial Surg. 2010;38:560–564.
  • Ma M, Pulijala Y, Ayoub A. Oculus surgery–an application of oculus rift and stereoscopic 3D videos in training maxillofacial surgeons. Serious Games and Edutainment Applications - Volume II. Berlin, Heidelberg: Springer. 2017. pp.187-202.
  • Lin YK, Yau HT, Wang I, et al. A novel dental implant guided surgery based on integration of surgical template and augmented reality. Clin Implant Dent Relat Res. 2015;17:543–553.
  • Tse B, Harwin W, Barrow A, et al. Design and development of a haptic dental training system-hapTEL. International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Berlin, Heidelberg: Springer; 2010. pp. 101–108.
  • Hayward V, Astley OR, Cruz-Hernandez M, et al. Haptic interfaces and devices. Sens Rev. 2004;24:16–29.
  • Kim S, Hasegawa S, Koike Y, et al. Tension based 7-DOF force feedback device: SPIDAR-G. Virtual Reality, 2002. Proceedings. IEEE. IEEE; 2002. pp. 283–284.
  • Thomas G, Johnson L, Dow S, et al. The design and testing of a force feedback dental simulator. Comput Methods Programs Biomed. 2001;64:53–64.
  • Colgate JE, Schenkel G. Passivity of a class of sampled-data systems: application to haptic interfaces. American Control Conference, 1994, vol. 3. IEEE; 1994. pp. 3236–3240.
  • Gregory A, Lin MC, Gottschalk S, et al.. A framework for fast and accurate collision detection for haptic interaction. ACM SIGGRAPH 2005 Courses. ACM. 2005. pp. 34.
  • Jiménez P, Thomas F, Torras C. 3D collision detection: a survey. Comput Graph. 2001;25:269–285.
  • Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM; 1996. pp. 171–180.
  • Palmer I. Collision detection for animation: the use of the sphere-tree data structure. The second departmental workshop on computing research. University of Bradford; 1995.
  • Klosowski JT, Held M, Mitchell JSB, et al. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans Vis Comput Graph. 1998;4:21–36.
  • Bergen G. Efficient collision detection of complex deformable models using AABB trees. J Graph Tools. 1997;2:1–13.
  • Chang JW, Wang W, Kim MS. Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Comput-Aided Des. 2010;42:50–57.
  • Zilles CB, Salisbury JK. A constraint-based god-object method for haptic display. Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on vol. 3. IEEE; 1995. pp. 146–151.
  • Ruspini DC, Kolarov K, Khatib O The haptic display of complex graphical environments. Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1997: 345–352.
  • Ruspini D, Khatib O. Haptic display for human interaction with virtual dynamic environments. J Field Robot. 2001;18:769–783.
  • Wan M, McNeely WA Quasi-static approximation for 6 degrees-of-freedom haptic rendering. Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE Computer Society; 2003. pp. 34.
  • Gregory A, Mascarenhas A, Ehmann S, et al. Six degree-of-freedom haptic display of polygonal models. Proceedings of the conference on Visualization’00. IEEE Computer Society Press; 2000. pp. 139–146.
  • Thompson TV, Nelson DD, Cohen E, et al. Maneuverable NURBS models within a haptic virtual environment. Proc. 6th Ann. Symp. Haptic Interf Virt Environ Teleoperator Syst. 1997;61:37–44.
  • McNeely WA, Puterbaugh KD, Troy JJ. Voxel-based 6-dof haptic rendering improvements. Haptics-E. 2006;3(7):1–12.
  • Cavusoglu MC, Goktekin TG, Tendick F. GiPSi: a framework for open source/open architecture software development for organ-level surgical simulation. IEEE Trans Inf Technol Biomed. 2006;10:312–322.
  • Popovici DM, Hamza-Lup FG, Seitan A, et al. Comparative study of APIs and frameworks for haptic application development. Cyberworlds (CW), 2012 International Conference on. IEEE; 2012, pp. 37–44.
  • Meier U, López O, Monserrat C, et al. Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed. 2005;77:183–197.
  • Provot X. Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In: Graphics interface. Proc of Graphics Interface, 1995;23(19):147–154.
  • Gibson SF 3D chainmail: a fast algorithm for deforming volumetric objects. Proceedings of the 1997 symposium on Interactive 3D graphics. ACM; 1997. pp. 149–ff.
  • Mollemans W, Schutyser F, Nadjmi N, et al. Very fast soft tissue predictions with mass tensor model for maxillofacial surgery planning systems. Int Congr Ser Elsevier. 2005;1281:491–496.
  • Liebregts JHF, Timmermans M, De Koning MJJ, et al. Three-dimensional facial simulation in bilateral sagittal split osteotomy: a validation study of 100 patients. J Oral Maxillofac Surg. 2015;73:961–970.
  • Bro‐Nielsen M, Cotin S. Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation. Comput Graph Forum Blackwell Science Ltd. 1996;15: 57–66.
  • James DL, Pai DK ArtDefo: accurate real time deformable objects. Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.; 1999. pp. 65–72.
  • Keeve E, Girod S, Pfeifle P, et al. Anatomy-based facial tissue modeling using the finite element method. Proceedings of the 7th Conference on Visualization’96. IEEE Computer Society Press; 1996. pp. 21–ff.
  • Bro-Nielsen M Surgery simulation using fast finite elements. Visualization in Biomedical Computing. Springer Berlin/Heidelberg; 1996. pp. 529–534.
  • Barbagli F, Salisbury K, Prattichizzo D. Dynamic local models for stable multi-contact haptic interaction with deformable objects. Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th Symposium on. IEEE; 2003. pp. 109–116.
  • Wu J, Yu G, Wang D, et al. Voxel-based interactive haptic simulation of dental drilling. San Diego: CA; 2009. p. 39–48.
  • Kim K, Park J. Virtual bone drilling for dental implant surgery training. Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology. ACM; 2009. pp. 91–94.
  • Turini G, Ganovelli F, Montani C. Simulating drilling on tetrahedral meshes. Proc of Eurographics Conference. 2006. pp.127–131.
  • Liao D, Liao S, Chen X. A patient-specific haptic drilling simulator based on surface rendering. Proceedings of the 12th Asian Conference on Computer Aided Surgery. 2016.
  • Piattelli A, Scarano A, Quaranta M. High-precision, cost-effective cutting system for producing thin sections of oral tissues containing dental implants. Biomaterials. 1997;18:577–579.
  • Lin Y, Wang X, Wu F, et al. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. J Biomed Inform. 2014;48:122–129.
  • Bruyns CD, Senger S, Menon A, et al. A survey of interactive mesh‐cutting techniques and a new method for implementing generalized interactive mesh cutting using virtual tools. Comput Animat Virtual Worlds. 2002;13(1):21–42.
  • Wang D, Zhang Y, Wang Y, et al. Cutting on triangle mesh: local model-based haptic display for dental preparation surgery simulation. IEEE Trans Vis Comput Graph. 2005;11:671–683.
  • Mor AB, Kanade T. Modifying soft tissue models: progressive cutting with minimal new element creation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer; 2000. p. 598–607.
  • Bielser D, Glardon P, Teschner M, et al. A state machine for real-time cutting of tetrahedral meshes. Graph Models. 2004;66(6):398–417.
  • Nienhuys HW, van der Stappen AF. A surgery simulation supporting cuts and finite element deformation. International conference on medical image computing and computer-assisted intervention. Berlin, Heidelberg: Springer; 2001. pp. 145–152.
  • Gibson S, Fyock C, Grimson E, et al. Volumetric object modeling for surgical simulation. Med Image Anal. 1998;2(2):121–132.
  • Webster R, Sassani J, Shenk R, et al. Simulating the continuous curvilinear capsulorhexis procedure during cataract surgery on the EYESI system. Stud Health Technol Inform. 2005;111:5.
  • Feudner EM, Engel C, Neuhann IM, et al. Virtual reality training improves wet-lab performance of capsulorhexis: results of a randomized, controlled study. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:955.
  • Payandeh S, Shi F. Interactive multi-modal suturing. Virtual Real. 2010;14:241–253.
  • Cotin S, Delingette H, Ayache N. A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput. 2000;16:437–452.
  • Berkley J, Turkiyyah G, Berg D, et al. Real-time finite element modeling for surgery simulation: an application to virtual suturing. IEEE Trans Vis Comput Graph. 2004;10:314–325.
  • Marshall P, Payandeh S, Dill J. Suturing for surface meshes. Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on. IEEE; 2005. pp. 31–36.
  • Lenoir J, Meseure P, Grisoni L, et al. A suture model for surgical simulation. Med Simul. 2004;3078:105–113.
  • Zhang J, Gu L, Huang P, et al. Real-time cutting and suture simulation using hybrid elastic model. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE. 2007: 3646–3649.
  • Webster RW, Zimmerman DI, Mohler BJ, et al. A prototype haptic suturing simulator. Stud Health Technol Inform. 2001;81:567–569.
  • Schvartzman SC, Silva R, Salisbury K, et al. Computer-aided trauma simulation system with haptic feedback is easy and fast for oral-maxillofacial surgeons to learn and use[J]. J Oral Maxillofac Surg. 2014;72(10):1984–1993.
  • Norman G. Likert scales, levels of measurement and the “laws” of statistics. Adv Health Sci Educ. 2010;15:625–632.
  • Steinberg AD, Bashook PG, Drummond J, et al. Assessment of faculty perception of content validity of Periosim©, a haptic-3D virtual reality dental training simulator. J Dent Educ. 2007;71:1574–1582.
  • Lund B, Fors U, Sejersen R, et al. Student perception of two different simulation techniques in oral and maxillofacial surgery undergraduate training. BMC Med Educ. 2011;11:82.
  • Luciano C, Banerjee P, DeFanti T. Haptics-based virtual reality periodontal training simulator. Virtual Real. 2009;13:69–85.
  • Gal GB, Weiss EI, Gafni N, et al. Preliminary assessment of faculty and student perception of a haptic virtual reality simulator for training dental manual dexterity. J Dent Educ. 2011;75:496–504.
  • Wang D, Zhang Y, Hou J, et al. iDental: a haptic-based dental simulator and its preliminary user evaluation. IEEE Trans Haptics. 2012;5:332–343.
  • Rhienmora P, Haddawy P, Suebnukarn S, et al. Providing objective feedback on skill assessment in a dental surgical training simulator. Artif Intell Med. 2009;5651:305–314.
  • Morris D, Sewell C, Barbagli F, et al. Visuohaptic simulation of bone surgery for training and evaluation. IEEE Comput Graph Appl. 2006;26:48–57.
  • Sewell C, Morris D, Blevins NH, et al. Providing metrics and performance feedback in a surgical simulator. Comput Aided Surger. 2008;13:63–81.
  • Rhienmora P, Haddawy P, Suebnukarn S, et al. Intelligent dental training simulator with objective skill assessment and feedback. Artif Intell Med. 2011;52:115–121.
  • Rhienmora P, Gajananan K, Haddawy P, et al. Haptic augmented reality dental trainer with automatic performance assessment. Proceedings of the 15th international conference on Intelligent user interfaces. ACM; 2010. pp. 425–426.
  • Kruger J, Westermann R. Acceleration techniques for GPU-based volume rendering. Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE Computer Society; 2003. p. 38.
  • Westwood JD. A GPU accelerated spring mass system for surgical simulation. In Medicine meets virtual reality 13: the magical next becomes the medical now, 111. 2005. p. 342.
  • Troulis MJ, Everett P, Seldin EB, et al. Development of a three-dimensional treatment planning system based on computed tomographic data. Int J Oral Maxillofac Surg. 2002;31:349–357.
  • Courtecuisse H, Jung H, Allard J, et al. GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol. 2010;103:159–168.
  • Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236(4):458.
  • Müller M, Schirm S, Teschner M. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care. 2004;12:25–31.
  • Qin J, Pang WM, Nguyen BP, et al. Particle-based simulation of blood flow and vessel wall interactions in virtual surgery. Proceedings of the 2010 Symposium on Information and Communication Technology. ACM; 2010. pp. 128–133.
  • Duriez C Real-time haptic simulation of medical procedures involving deformations and device-tissue interactions. Université des Sciences et Technologie de Lille-Lille I, 2013.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.