4,264
Views
60
CrossRef citations to date
0
Altmetric
Review

Recent advances in nuclear and hybrid detection modalities for image-guided surgery

, , , , &
Pages 711-734 | Received 19 Apr 2019, Accepted 08 Jul 2019, Published online: 26 Jul 2019

References

  • Herrmann K, Nieweg OE, Povoski SP. Radioguided surgery. Switzerland: Springer International; 2016. DOI: 10.1007/978-3-319-26051-8.
  • Selverstone B, Sweet WH, Robinson CV. The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann Surg. 1949;130(4):643.
  • Harris C, Bigelow R, Francis J, et al. A CsI (Tl)-crystal surgical scintillation probe. Nucleonics. New York City: McGraw-Hill Publishing Co., Inc., 1956;14:102–108.
  • Povoski SP. The history of radioguided surgery: early historical milestones and the development of later innovative clinical applications. In: Herrmann K, Nieweg OE, Povoski SP, eds. Radioguided surgery. Switzerland: Springer International; 2016. p. 3–12.
  • Alex JC. The application of sentinel node radiolocalization to solid tumors of the head and neck: a 10-year experience. Laryngoscope. 2004 Jan;114(1):2–19.
  • Chondrogiannis S, Ferretti A, Facci E, et al. Intraoperative hand-held imaging γ-camera for sentinel node detection in patients with breast cancer: feasibility evaluation and preliminary experience on 16 patients. Clin Nucl Med. 2013;38(3):e132–e136.
  • Duch J. Portable gamma cameras: the real value of an additional view in the operating theatre. Eur J Nucl Med Mol Imaging. 2011 April 01;38(4):633–635.
  • Hoogendam JP, Hobbelink MG, Veldhuis WB, et al. Preoperative sentinel node mapping with (99m)Tc-nanocolloid SPECT-CT significantly reduces the intraoperative sentinel node retrieval time in robot assisted laparoscopic cervical cancer surgery. Gynecol Oncol. 2013 May;129(2):389–394.
  • Jeschke S, Lusuardi L, Myatt A, et al. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology. 2012 Nov;80(5):1080–1086.
  • Leong SP, Kim J, Ross M, et al. A phase 2 study of (99m)Tc-tilmanocept in the detection of sentinel lymph nodes in melanoma and breast cancer. Ann Surg Oncol. 2011 Apr;18(4):961–969.
  • Marcinow AM, Hall N, Byrum E, et al. Use of a novel receptor-targeted (CD206) radiotracer, 99mTc-tilmanocept, and SPECT/CT for sentinel lymph node detection in oral cavity squamous cell carcinoma: initial institutional report in an ongoing phase 3 study. JAMA Otolaryngol Head Neck Surg. 2013 Sep;139(9):895–902.
  • Mariani G, Moresco L, Viale G, et al. Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med. 2001 Aug;42(8):1198–1215.
  • Murawa D, Nowaczyk P, Wiegering A. Radioguided sentinel lymph node mapping and biopsy in colorectal cancer. In: Herrmann K, Nieweg OE, Povoski SP, eds. Radioguided surgery. Switzerland: Springer International; 2016. p. 279–297.
  • Rietbergen DD, Van Den Berg NS, Van Leeuwen FW, et al. Hybrid techniques for intraoperative sentinel lymph node imaging: early experiences and future prospects. Imaging Med. 2013;5(2):147–159.
  • Saikawa Y, Otani Y, Kitagawa Y, et al. Interim results of sentinel node biopsy during laparoscopic gastrectomy: possible role in function-preserving surgery for early cancer. World J Surg. 2006 Nov;30(11):1962–1968.
  • Satoh M, Ito A, Kaiho Y, et al. Intraoperative, radio-guided sentinel lymph node mapping in laparoscopic lymph node dissection for Stage I testicular carcinoma. Cancer. 2005 May 15;103(10):2067–2072.
  • Sondak VK, King DW, Zager JS, et al. Combined analysis of phase III trials evaluating [(9)(9)mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol. 2013 Feb;20(2):680–688.
  • Surasi DS, O’Malley J, Bhambhvani P. 99mTc-Tilmanocept: a novel molecular agent for lymphatic mapping and sentinel lymph node localization. J Nucl Med Technol. 2015 Jun;43(2):87–91.
  • Takeuchi H, Goto O, Yahagi N, et al. Function-preserving gastrectomy based on the sentinel node concept in early gastric cancer. Gastric Cancer. 2017 Mar;20(Suppl 1):53–59.
  • Tokin CA, Cope FO, Metz WL, et al. The efficacy of Tilmanocept in sentinel lymph mode mapping and identification in breast cancer patients: a comparative review and meta-analysis of the (9)(9)mTc-labeled nanocolloid human serum albumin standard of care. Clin Exp Metastasis. 2012 Oct;29(7):681–686.
  • Valdes Olmos RA, Rietbergen DD, Vidal-Sicart S, et al. Contribution of SPECT/CT imaging to radioguided sentinel lymph node biopsy in breast cancer, melanoma, and other solid cancers: from “open and see” to “see and open”. Q J Nucl Med Mol Imaging. 2014 Jun;58(2):127–139.
  • van Den Berg NS, Buckle T, KleinJan GH, et al. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur Urol. 2017 July 01;72(1):110–117.
  • Wallace AM, Han LK, Povoski SP, et al. Comparative evaluation of [(99m)tc]tilmanocept for sentinel lymph node mapping in breast cancer patients: results of two phase 3 trials. Ann Surg Oncol. 2013 Aug;20(8):2590–2599.
  • Weckermann D, Thalgott M, Holl G, et al. Radioguided surgery in urological malignancies. Indian J Urol. 2008 Jan;24(1):4–9.
  • Cabanas RM. An approach for the treatment of penile carcinoma. Cancer. 1977 Feb;39(2):456–466.
  • Betancourt JH, Vera CD, Martinez-Sarmiento M, et al. Application of the radio-guided occult lesion localization technique for renal lumpectomy: from the laboratory to the patient. Clin Nucl Med. 2017;42(11):e467–e468.
  • Cerit ET, Yalcin MM, zkan C, et al. Guided intraoperative scintigraphic tumor targeting of metastatic cervical lymph nodes in patients with differentiated thyroid cancer: a single-center report. Arch Endocrinol Metab. 2018 Oct;62(5):495–500.
  • Galetta D, Bellomi M, Grana C, et al. Radio-guided localization and resection of small or ill-defined pulmonary lesions. Ann Thorac Surg. 2015 Oct;100(4):1175–1180.
  • Lavoue V, Nos C, Clough KB, et al. Simplified technique of radioguided occult lesion localization (ROLL) plus sentinel lymph node biopsy (SNOLL) in breast carcinoma. Ann Surg Oncol. 2008 Sep;15(9):2556–2561.
  • Manca G, Mazzarri S, Rubello D, et al. Radioguided occult lesion localization: technical procedures and clinical applications. Clin Nucl Med. 2017 Dec;42(12):e498–e503.
  • Monti S, Galimberti V, Trifiro G, et al. Occult breast lesion localization plus sentinel node biopsy (SNOLL): experience with 959 patients at the European Institute of Oncology. Ann Surg Oncol. 2007 Oct;14(10):2928–2931.
  • Paredes P, Vidal-Sicart S, Zanón G, et al. Radioguided occult lesion localisation in breast cancer using an intraoperative portable gamma camera: first results. Eur J Nucl Med Mol Imaging. 2008;35(2):230–235.
  • Vitral G, Salgado H, Rangel J. Use of radioguided surgery in abdominal wall endometriosis: an innovative approach [case report]. World J Nucl Med. 2018 July 1;17(3):204–206.
  • Zurrida S, Galimberti V, Monti S, et al. Radioguided localization of occult breast lesions. Breast. 1998;7(1):11–13.
  • Donker M, Straver ME, Wesseling J, et al. Marking axillary lymph nodes with radioactive iodine seeds for axillary staging after neoadjuvant systemic treatment in breast cancer patients: the MARI procedure. Ann Surg. 2015;261(2):378–382.
  • van der Noordaa ME, Pengel KE, Groen E, et al. The use of radioactive iodine-125 seed localization in patients with non-palpable breast cancer: a comparison with the radioguided occult lesion localization with 99m technetium. Eur J Surg Oncol. 2015 Apr;41(4):553–558.
  • Essner R, Hsueh EC, Haigh PI, et al. Application of an [18F] fluorodeoxyglucose-sensitive probe for the intraoperative detection of malignancy. J Surg Res. 2001;96(1):120–126.
  • Kim WW, Kim JS, Hur SM, et al. Radioguided surgery using an intraoperative PET probe for tumor localization and verification of complete resection in differentiated thyroid cancer: a pilot study. Surgery. 2011 Mar;149(3):416–424.
  • Kraeber-Bodéré F, Cariou B, Curtet C, et al. Feasibility and benefit of fluorine 18–fluoro-2-deoxyglucose–guided surgery in the management of radioiodine-negative differentiated thyroid carcinoma metastases. Surgery. 2005;138(6):1176–1182.
  • Lee GO, Costouros NG, Groome T, et al. The use of intraoperative PET probe to resect metastatic melanoma. BMJ Case Rep. 2010;2010:bcr1220092593.
  • Molina MA, Goodwin WJ, Moffat FL, et al. Intra-operative use of PET probe for localization of FDG avid lesions. Cancer Imaging. 2009 Sep;29(9):59–62.
  • Povoski SP, Hall NC, Murrey DA, et al. Feasibility of a multimodal 18 F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer. 2015;15(1):378.
  • Vos C, Hartemink K, Muller S, et al. Clinical applications of FDG-probe guided surgery. Acta Chir Belg. 2012;112(6):414–418.
  • Arbizu J, Rodriguez-Fraile M, Dominguez-Prado I, et al. Whole body 18fluoro-l-dopa PET–CT: a useful tool for location and surgical guidance in primary carcinoid tumours. Eur J Nucl Med Mol Imaging. 2008;35(8):1577.
  • Aras G, Gültekin SS, Küçük NÖ, et al. Intraoperative gamma probe guidance with 99m Tc-pertechnetate in the completion thyroidectomy. Ann Nucl Med. 2009;23(5):421–426.
  • Ubhi C, Hardy J, Pegg C. Mediastinal parathyroid adenoma: a new method of localization. Br J Surg. 1984;71(11):859–860.
  • Adams S, Acker P, Lorenz M, et al. Radioisotope‐guided surgery in patients with pheochromocytoma and recurrent medullary thyroid carcinoma: a comparison of preoperative and intraoperative tumor localization with histopathologic findings. Cancer: Interdiscip Int J Am Cancer Soc. 2001;92(2):263–270.
  • Al-Saeedi F. Role of 99mTc-(V) DMSA in detecting tumor cell proliferation. Anal Chem Insights. 2007;2:117739010700200001.
  • Axelsson C, Nielsen B, Graff J. Radioisotope-guided surgical biopsy of costal metastases in breast cancer patients. Scand J Surg. 2002;91(4):333–335.
  • Isgoren S, Demir H, Daglioz-Gorur G, et al. Gamma probe guided surgery for osteoid osteoma: is there any additive value of quantitative bone scintigraphy? Revista Española de Medicina Nuclear e Imagen Molecular (English Edition). 2013 July 01;32(4):234–239.
  • Krag D, Ford P, Patel M, et al. A simplified technique to resect abnormal bony radiolocalizations using a gamma counter. Surg Oncol. 1992;1(5):371–377.
  • Robinson LA, Muro-Cacho C, Hubbell DS. Intraoperative gamma probe-directed biopsy of asymptomatic suspected bone metastases. Ann Thorac Surg. 1998;65(5):1426–1432.
  • Von Meyenfeldt E, Siebenga J, Van Der Pol H, et al. Radionuclide-guided biopsy of bone lesions in cancer patients; a reliable, well-tolerated technique. Eur J Surg Oncol. 2014;40(2):193–196.
  • Duarte G, Cabello C, Torresan R, et al. Radioguided intraoperative margins evaluation (RIME): preliminary results of a new technique to aid breast cancer resection. Eur J Surg Oncol. 2007;33(10):1150–1157.
  • García-Talavera P, González-Selma ML, Ruiz M, et al. The value of early SPECT/CT and hand-held γ-camera in radio-guided surgery: a case of a hard-to-locate parathyroid adenoma. Clin Nucl Med. 2014;39(11):1009–1011.
  • Ikeda Y, Takayama J, Takami H. Minimally invasive radioguided parathyroidectomy for hyperparathyroidism. Ann Nucl Med. 2010;24(4):233–240.
  • Mariani G, Gulec SA, Rubello D, et al. Preoperative localization and radioguided parathyroid surgery. J Nucl Med. 2003;44(9):1443–1458.
  • Martinez DA, King DR, Romshe C, et al. Intraoperative identification of parathyroid gland pathology: a new approach. J Pediatr Surg. 1995;30(9):1306–1309.
  • Placzkowski K, Christian R, Chen H. Radioguided parathyroidectomy for recurrent parathyroid cancer. Clin Nucl Med. 2007;32(5):358–360.
  • Vilela Filho O, Carneiro Filho O. Gamma probe-assisted brain tumor microsurgical resection: a new technique. Arq Neuropsiquiatr. 2002;60(4):1042–1047.
  • Schattner A, Cohen A, Wolfson L, et al. Unexplained systemic symptoms and Gallium-67–guided decisions. Am J Med Sci. 2001;321(3):198–200.
  • Anderson RS, Eifert B, Tartt S, et al. Radioimmunoguided surgery using indium-111 capromab pendetide (PROSTASCINT) to diagnose supraclavicular metastasis from prostate cancer. Urology. 2000;56(4):669.
  • Badalament RA, Burgers JK, Petty LR, et al. Radioimmunoguided radical prostatectomy and lymphadenectomy. Cancer. 1993;71(7):2268–2275.
  • Rauscher I, Düwel C, Wirtz M, et al. Value of 111In‐prostate‐specific membrane antigen (PSMA)‐radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: correlation with histopathology and clinical follow‐up. BJU Int. 2017;120(1):40–47.
  • Rauscher I, Horn T, Eiber M, et al. Novel technology of molecular radio-guidance for lymph node dissection in recurrent prostate cancer by PSMA-ligands. World J Urol. 2018 Apr;36(4):603–608.
  • Povoski SP, Hall NC, Murrey DA Jr, et al. Multimodal imaging and detection strategy with 124 I-labeled chimeric monoclonal antibody cG250 for accurate localization and confirmation of extent of disease during laparoscopic and open surgical resection of clear cell renal cell carcinoma. Surg Innov. 2013;20(1):59–69.
  • Dawson P, Blair S, Begent R, et al. The value of radioimmunoguided surgery in first and second look laparotomy for colorectal cancer. Dis Colon Rectum. 1991;34(3):217–222.
  • Gu J, Zhao J, Li Z, et al. Clinical application of radioimmunoguided surgery in colorectal cancer using 125 I-labeled carcinoembryonic antigen-specific monoclonal antibody submucosally. Dis Colon Rectum. 2003;46(12):1659–1666.
  • Hladik P, Vizda J, Bedrna J, et al. Immunoscintigraphy and intra‐operative radioimmunodetection in the treatment of colorectal carcinoma. Colorectal Dis. 2001;3(6):380–386.
  • Krag DN, Haseman MK, Ford P, et al. Gamma probe location of 111 indium‐labeled B72. 3: an extension of immunoscintigraphy. J Surg Oncol. 1992;51(4):226–230.
  • Martin JE, Tuttle S, Rousseau M, et al. Radioimmunoguided surgery: intraoperative use of monoclonal antibody 17-1A in colorectal cancer. Hybridoma. 1986;5:S97–108.
  • Muxi A, Pons F, Vidal-Sicart S, et al. Radioimmunoguided surgery of colorectal carcinoma with an 111In-labelled anti-TAG72 monoclonal antibody. Nucl Med Commun. 1999;20(2):123–130.
  • Nieroda C, Mojzisik C, Hinkle G, et al. Radioimmunoguided surgery (RIGS) in recurrent colorectal cancer. Cancer Detect Prev. 1991;15(3):225–229.
  • O’Dwyer PJ, Mojzisik CM, Hinkle GH, et al. Intraoperative probe-directed immunodetection using a monoclonal antibody. Arch Surg. 1986;121(12):1391–1394.
  • Xu G, Zhang M, Liu B, et al., editors. Radioimmunoguided surgery in gastric cancer using 131‐I labeled monoclonal antibody 3H11. Semin Surg Oncol. New York: John Wiley & Sons, Inc. 1994;10:88-94. DOI: 10.1002/ssu.2980100205.
  • Wang C, Wang Y, Su X, et al. Iodine-125 labeled monoclonal antibody 3H11: in radioimmunoguided surgery for primary gastric cancer. Zhonghua Wai Ke Za Zhi. 2000;38(7):507–509.
  • Ind T, Granowska M, Britton K, et al. Peroperative radioimmunodetection of ovarian carcinoma using a hand-held gamma detection probe. Br J Cancer. 1994;70(6):1263.
  • Adams S, Baum RP, Hertel A, et al. Intraoperative gamma probe detection of neuroendocrine tumors. J Nucl Med. 1998;39(7):1155.
  • Cuccurullo V, Di Stasio GD, Mansi L. Radioguided surgery with radiolabeled somatostatin analogs: not only in GEP-NETs. Nucl Med Rev Cent East Eur. 2017;20(1):49–56.
  • Cuntz MC, Levine EA, O’Dorisio TM, et al. Intraoperative gamma detection of 125 I-lanreotide in women with primary breast cancer. Ann Surg Oncol. 1999;6(4):367–372.
  • Einspieler I, Novotny A, Okur A, et al. First experience with image-guided resection of paraganglioma. Clin Nucl Med. 2014;39(8):e379–81.
  • Gay E, Vuillez JP, Palombi O, et al. Intraoperative and postoperative gamma detection of somatostatin receptors in bone-invasive en plaque meningiomas. Operative Neurosurg. 2005;57(suppl_1):107–113.
  • Grossrubatscher E, Vignati F, Dalino P, et al. Use of radioguided surgery with [111 In]-pentetreotide in the management of an ACTH-secreting bronchial carcinoid causing ectopic Cushing’s syndrome. J Endocrinol Invest. 2005;28(3):72–78.
  • Gulec SA, Baum R. Radio-guided surgery in neuroendocrine tumors. J Surg Oncol. 2007 Sep 15;96(4):309–315.
  • Hubalewska-Dydejczyk A, Kulig J, Szybinski P, et al. Radio-guided surgery with the use of [99m Tc-EDDA/HYNIC] octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract. Eur J Nucl Med Mol Imaging. 2007;34(10):1545–1555.
  • Kaemmerer D, Prasad V, Daffner W, et al. Radioguided surgery in neuroendocrine tumors using Ga-68-labeled somatostatin analogs: a pilot study. Clin Nucl Med. 2012;37(2):142–147.
  • Mansi L, Rambaldi PF, Panza N, et al. Diagnosis and radioguided surgery with 111In-pentetreotide in a patient with paraneoplastic Cushing’s syndrome due to a bronchial carcinoid. Eur J Endocrinol. 1997;137(6):688–690.
  • Martelli H, Ricard M, Larroquet M, et al. Intraoperative localization of neuroblastoma in children with 123I-or 125I-radiolabeled metaiodobenzylguanidine. Surgery. 1998;123(1):51–57.
  • Öhrvall U, Westlin JE, Nilsson S, et al. Intraoperative gamma detection reveals abdominal endocrine tumors more efficiently than somatostatin receptor scintigraphy. Cancer: Interdiscip Int J Am Cancer Soc. 1997;80(S12):2490–2494.
  • Panareo S, Carcoforo P, Lanzara S, et al. Radiolabelled somatostatin analogs for diagnosis and radio-guided surgery of neuroendocrine breast cancer undetectable with conventional imaging procedures. Breast. 2008;17(1):111–114.
  • Ricard M, Tenenbaum F, Schlumberger M, et al. Intraoperative detection of pheochromocytoma with iodine-125 labelled meta-iodobenzylguanidine: a feasibility study. Eur J Nucl Med. 1993;20(5):426–430.
  • Sadowski SM, Millo C, Neychev V, et al. Feasibility of radio-guided surgery with 68 Gallium-DOTATATE in patients with gastro-entero-pancreatic neuroendocrine tumors. Ann Surg Oncol. 2015;22(3):676–682.
  • Sánchez N, Tapias A, Bowles H, et al. Multimodal approach in radioguided surgery in a case of multiple paraganglioma. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition). 2018 Jan 01;37(1):41–45.
  • Schirmer WJ, O’Dorisio TM, Schirmer TP, et al. Intraoperative localization of neuroendocrine tumors with 125I-TYR (3)-octreotide and a hand-held gamma-detecting probe. Surgery. 1993;114(4):745–752.
  • van Hulsteijn LT, Corssmit EP, van der Hiel B, et al. Is there a role for radioguided surgery with iodine-labeled metaiodobenzylguanidine in resection of neuroendocrine tumors? Clin Nucl Med. 2012;37(11):1083–1088.
  • Woltering EA, Barrie R, O’Dorisio TM, et al. Detection of occult gastrinomas with iodine 125-labeled lanreotide and intraoperative gamma detection. Surgery. 1994;116(6):1139–1147.
  • Ashkenazy M, Davis L, Martin J. An evaluation of the technic and results of the radioactive di-iodo-fluorescein test for the localization of intracranial lesions. J Neurosurg. 1951;8(3):300–314.
  • Berland TL, Smith SL, Metzger PP, et al. Intraoperative gamma probe localization of the ureters: a novel concept. J Am Coll Surg. 2007 Oct 01;205(4):608–611.
  • van Oosterom MN, Simon H, Mengus L, et al. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am J Nucl Med Mol Imaging. 2016;6(1):1–17.
  • Valdes Olmos RA, Vidal-Sicart S, Manca G, et al. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging. 2017 Sep;61(3):247–270.
  • Bowles H, Sánchez N, Tapias A, et al. Radioguided surgery and the GOSTT concept: from pre-operative image and intraoperative navigation to image-assisted excision. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition). 2017 May 01;36(3):175–184.
  • Pouw B, de Wit‐van der Veen LJ, Stokkel MP, et al. Heading toward radioactive seed localization in non‐palpable breast cancer surgery? A meta‐analysis. J Surg Oncol. 2015;111(2):185–191.
  • Valdes Olmos RA, Vidal-Sicart S, Giammarile F, et al. The GOSTT concept and hybrid mixed/virtual/augmented reality environment radioguided surgery. Q J Nucl Med Mol Imaging. 2014 Jun;58(2):207–215.
  • Maurer T, Robu S, Schottelius M, et al. 99mTechnetium-based prostate-specific membrane antigen–radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75(4):659-666. DOI: 10.1016/j.eururo.2018.03.013.
  • Povoski SP, Neff RL, Mojzisik CM, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009 Jan;27(7):11.
  • Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras [review]. Semin Nucl Med. 2011 May;41(3):166–181.
  • Kang HG, Song SH, Han YB, et al. Proof-of-concept of a multimodal laparoscope for simultaneous NIR/gamma/visible imaging using wavelength division multiplexing. Optics express. 2018;26(7):8325-8339.
  • Maurer T, Weirich G, Schottelius M, et al. Prostate-specific membrane antigen–radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol. 2015;68(3):530–534.
  • Woolfenden J, Barber HB. Design and use of radiation detector probes for intraoperative tumor detection using tumor-seeking radiotracers. in Freeman LM (ed): Nuclear Medicine Annual. Philadelphia, Lippincott-Raven Publishers, 1990, pp 151-173.
  • Vidal-Sicart S, Vermeeren L, Solà O, et al. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera. Eur J Nucl Med Mol Imaging. 2011;38(4):636–641.
  • Warncke SH, Mattei A, Fuechsel FG, et al. Detection rate and operating time required for γ probe-guided sentinel lymph node resection after injection of technetium-99m nanocolloid into the prostate with and without preoperative imaging. Eur Urol. 2007;52(1):126–133.
  • KleinJan GH, van Den Berg NS, de Jong J, et al. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re) connect nuclear medicine to advances made in robot-assisted surgery. Eur J Nucl Med Mol Imaging. 2016;43(7):1278–1287.
  • Ohyama C, Chiba Y, Yamazaki T, et al. Lymphatic mapping and gamma probe guided laparoscopic biopsy of sentinel lymph node in patients with clinical stage I testicular tumor. J Urol. 2002 Oct;168(4 Pt 1):1390–1395.
  • van der Poel HG, Buckle T, Brouwer OR, et al. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011 Oct;60(4):826–833.
  • Jeschke S, Beri A, Grüll M, et al. Laparoscopic radioisotope-guided sentinel lymph node dissection in staging of prostate cancer. Eur Urol. 2008;53(1):126–133.
  • Vermeeren L, Olmos RV, Meinhardt W, et al. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies. Eur J Nucl Med Mol Imaging. 2009;36(7):1029–1036.
  • Kitagawa Y, Kitajima M. Gastrointestinal cancer and sentinel node navigation surgery. J Surg Oncol. 2002;79(3):188–193.
  • Kitagawa Y, Kitano S, Kubota T, et al. Minimally invasive surgery for gastric cancer—toward a confluence of two major streams: a review. Gastric Cancer. 2005;8(2):103–110.
  • Acar C, Kleinjan GH, van Den Berg NS, et al. Advances in sentinel node dissection in prostate cancer from a technical perspective. Int J Urol. 2015 Oct;22(10):898–909.
  • Meershoek P, van Oosterom MN, Simon H, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur J Nucl Med Mol Imaging. 2019 Jan; 46(1): 49–53.
  • Leeuwen F, Oosterom M, Meershoek P, et al. Minimal-invasive robot-assisted image-guided resection of PSMA-positive lymph nodes in recurrent prostate cancer. Clin Nucl Med. 2019;44(7):580–581.
  • Povoski SP, Hall NC, Murrey DA, et al. Multimodal imaging and detection approach to 18 F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience. World J Surg Oncol. 2011;9(1):152.
  • Povoski SP, Murrey DA, Hall NC. 18 F-FDG-directed surgery and 18 F-FDG-directed interventional procedures. In: Herrmann K, Nieweg OE, Povoski SP, eds. Radioguided Surgery. Switzerland: Springer International; 2016. p. 419–445.
  • Daghighian F, Fong Y. Detectors for intraoperative molecular imaging: from probes to scanners. In: Fong Y., Giulianotti P., Lewis J, et al, eds. Imaging and visualization in the modern operating room. New York, NY: Springer; 2015. p. 55–67.
  • Gulec SA, Daghighian F, Essner R. PET-Probe: evaluation of technical performance and clinical utility of a handheld high-energy gamma probe in oncologic surgery. Ann Surg Oncol. 2016;23(5):9020–9027.
  • García JR, Fraile M, Soler M, et al. PET/CT-guided salvage surgery protocol. Results with ROLL technique and PET probe. Revista Española De Medicina Nuclear (english Edition). 2011 July 01;30(4):217–222.
  • Gulec SA, Hoenie E, Hostetter R, et al. PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol. 2007 Jun;7(5):65.
  • Freesmeyer M, Wurst C, Überrueck T, et al. Intraoperative identification of a neuro endocrine tumour diagnosed by 68Ga-DOTATOC PET but undetectable by surgical palpation or conventional imaging. Nuklearmedizin. 2009;48(05):N50–N51.
  • González SJ, González L, Wong J, et al. An analysis of the utility of handheld PET probes for the intraoperative localization of malignant tissue. J Gastrointestinal Surg. 2011;15(2):358–366.
  • Heuveling DA, Karagozoglu KH, Van Lingen A, et al. Feasibility of intraoperative detection of sentinel lymph nodes with 89-zirconium-labelled nanocolloidal albumin PET-CT and a handheld high-energy gamma probe. EJNMMI Res. 2018;8(1):15.
  • Barranger E, Kerrou K, Petegnief Y, et al. Laparoscopic resection of occult metastasis using the combination of FDG-positron emission tomography/computed tomography image fusion with intraoperative probe guidance in a woman with recurrent ovarian cancer. Gynecol Oncol. 2005;96(1):241–244.
  • De Jong J, Van Ginkel R, Slart R, et al. FDG-PET probe-guided surgery for recurrent retroperitoneal testicular tumor recurrences. Eur J Surg Oncol. 2010;36(11):1092–1095.
  • Martin EW, Chapman GJ, Subramaniam VV, et al. Intraoperative detection of gamma emissions using K-alpha X-ray fluorescence. Expert Rev Med Devices. 2010;7(4):431–434.
  • Povoski SP, Chapman GJ, Murrey DA, et al. Intraoperative detection of 18 F-FDG-avid tissue sites using the increased probe counting efficiency of the K-alpha probe design and variance-based statistical analysis with the three-sigma criteria. BMC Cancer. 2013;13(1):98.
  • Collamati F, Bocci V, Castellucci P, et al. Radioguided surgery with β radiation: a novel application with Ga 68. Sci Rep. 2018;8(1):16171.
  • Camillocci ES, Baroni G, Bellini F, et al. A novel radioguided surgery technique exploiting β− decays. Sci Rep. 2014;4:4401.
  • Monge F, Shakir DI, Lejeune F, et al. Acquisition models in intraoperative positron surface imaging. Int J Comput Assist Radiol Surg. 2017;12(4):691–703.
  • Essner R, Daghighian F, Giuliano AE. Advances in FDG PET probes in surgical oncology. Cancer J. 2002;8(2):100–108.
  • Yen T-C, See L-C, Lai C-H, et al. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med. 2004;45(1):22–29.
  • Zervos EE, Desai DC, DePalatis LR, et al. 18F-labeled fluorodeoxyglucose positron emission tomography-guided surgery for recurrent colorectal cancer: a feasibility study. J Surg Res. 2001;97(1):9–13.
  • Piert M, Burian M, Meisetschläger G, et al. Positron detection for the intraoperative localisation of cancer deposits. Eur J Nucl Med Mol Imaging. 2007;34(10):1534–1544.
  • Strong VE, Humm J, Russo P, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc. 2008 Feb;22(2):386–391.
  • Camillocci ES, Schiariti M, Bocci V, et al. First ex vivo validation of a radioguided surgery technique with β-radiation. Phys Med. 2016;32(9):1139–1144.
  • Daghighian F, Mazziotta JC, Hoffman EJ, et al. Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery. Med Phys. 1994;21(1):153–157.
  • Russomando A, Bellini F, Bocci V, et al. An intraoperative beta-detecting probe for radio-guided surgery in tumour resection. IEEE Trans Nucl Sci. 2016;63(5):2533–2539.
  • Yamamoto S, Matsumoto K, Sakamoto S, et al. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19(1):23.
  • Mester C, Bruschini C, Magro P, et al., editors. A handheld β+ probe for intra-operative detection of radiotracers. Limerick, Ireland: SENSORS, 2011. IEEE. DOI: 10.1109/ICSENS.2011.612714.
  • Strauss HW, Mari C, Patt BE, et al. Intravascular radiation detectors for the detection of vulnerable atheroma. J Am Coll Cardiol. 2006;47(8 Supplement):C97–C100.
  • Lombardi A, Nigri G, Scopinaro F, et al. High-resolution, handheld camera use for occult breast lesion localization plus sentinel node biopsy (SNOLL): a single-institution experience with 186 patients. Surgeon. 2015 Apr;13(2):69–72.
  • Tsuchimochi M, Hayama K. Intraoperative gamma cameras for radioguided surgery: technical characteristics, performance parameters, and clinical applications. Phys Med. 2013 Mar 01;29(2):126–138.
  • Hellingman D, Vidal-Sicart S. The use of intraoperative small and large field of view gamma cameras for radioguided surgery. In: Herrmann K, Nieweg OE, Povoski SP, eds. Radioguided Surgery. Switzerland: Springer International Publishing; 2016. p. 35–56.
  • Bugby SL, Lees JE, Bhatia B, et al. Characterisation of a high resolution small field of view portable gamma camera. Phys Med. 2014;30(3):331–339.
  • Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics. 2018;8(1):99–116.
  • KleinJan GH, Hellingman D, van Den Berg NS, et al. Hybrid surgical guidance: does hardware integration of γ-and fluorescence imaging modalities make sense? J Nucl Med. 2017;58(4):646–650.
  • Hellingman D, Klop WMC, Olmos RAV. Detecting near-the-injection-site sentinel nodes in head and neck melanomas with a high-resolution portable gamma camera. Clin Nucl Med. 2015;40(1):e11–e16.
  • Engelen T, Winkel BM, Rietbergen DD, et al. The next evolution in radioguided surgery: breast cancer related sentinel node localization using a freehandSPECT-mobile gamma camera combination. Am J Nucl Med Mol Imaging. 2015;5(3):233–245.
  • Hellingman D, Vidal-Sicart S, Paredes P, et al. A new portable hybrid camera for fused optical and scintigraphic imaging: first clinical experiences. Clin Nucl Med. 2016;41(1):e39–e43.
  • Lees JE, Bugby SL, Bark A, et al. A hybrid camera for locating sources of gamma radiation in the environment. J Instrum. 2013;8(10):P10021.
  • Bugby S, Lees J, Ng A, et al. Investigation of an SFOV hybrid gamma camera for thyroid imaging. Phys Med. 2016;32(1):290–296.
  • Yamamoto S, Higashi T, Matsumoto K, et al. Development of a positron-imaging detector with background rejection capability. Ann Nucl Med. 2006;20(10):655.
  • Singh B, Stack BC, Thacker S, et al. A hand-held beta imaging probe for FDG. Ann Nucl Med. 2013;27(3):203–208.
  • Sabet H, Stack BC, Nagarkar VV. A hand-held, intra-operative positron imaging probe for surgical applications. IEEE Trans Nucl Sci. 2015;62(5):1927–1934.
  • Verdier M-A, Spadola S, Pinot L, et al. Gamma-background rejection method for a dual scintillator positron probe dedicated to radio-guided surgery. Nucl Instrum Methods Phys Res A. 2018;912:315–319.
  • Spadola S, Verdier M-A, Pinot L, et al. Design optimization and performances of an intraoperative positron imaging probe for radioguided cancer surgery. J Instrum. 2016;11(12):P12019.
  • Solestizi LA, Biasini M, Bocci V, et al. Use of a CMOS image sensor for beta-emitting radionuclide measurements. J Instrum. 2018;13(07):P07003.
  • Waelkens P, van Oosterom MN, van Den Berg NS, et al. Surgical navigation: an overview of the state-of-the-art clinical applications. In: Herrmann K, Nieweg OE, Povoski SP, editors. Radioguided Surgery. Switzerland: Springer International Publishing; 2016. p. 57–73.
  • van Oosterom MN, van der Poel HG, Navab N, et al. Computer-assisted surgery: virtual-and augmented-reality displays for navigation during urological interventions. Curr Opin Urol. 2018;28(2):205–213.
  • Didolkar MM, Anderson ME, Hochman MG, et al. Image guided core needle biopsy of musculoskeletal lesions: are nondiagnostic results clinically useful? Clin Orthop Relat Res. 2013;471(11):3601–3609.
  • Maciel MJS, Tyng CJ, Barbosa PNVP, et al. Computed tomography-guided percutaneous biopsy of bone lesions: rate of diagnostic success and complications. Radiol Bras. 2014;47(5):269–274.
  • El-Haddad G. PET-based percutaneous needle biopsy. PET Clin. 2016 Jul;11(3):333–349.
  • Kumar R, Mittal BR, Bhattacharya A, et al. 18F-FDG PET/CT-guided real-time automated robotic arm–assisted needle navigation for percutaneous biopsy of hypermetabolic bone lesions: diagnostic performance and clinical impact. Am J Roentgenol. 2019;212(1):W10–W18.
  • Radhakrishnan RK, Mittal BR, Gorla AKR, et al. Real-time intraprocedural 18F-FDG PET/CT-guided biopsy using automated robopsy arm (ARA) in the diagnostic evaluation of thoracic lesions with prior inconclusive biopsy results: initial experience from a tertiary health care centre. Br J Radiol. 2017;90(1080):20170258.
  • Hua Q, Zhu X, Zhang L, et al. Initial experience with real-time hybrid single-photon emission computed tomography/computed tomography-guided percutaneous transthoracic needle biopsy. Nucl Med Commun. 2017;38(6):556–560.
  • Wiegmann AL, Broucek JR, Fletcher RN, et al. Image-guided navigation in lymph node biopsy. JSLS. 2018;22(2).
  • Brouwer OR, Buckle T, Bunschoten A, et al. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys Med Biol. 2012;57(10):3123.
  • Brouwer OR, van Den Berg NS, Mathéron HM, et al. Feasibility of intraoperative navigation to the sentinel node in the groin using preoperatively acquired single photon emission computerized tomography data: transferring functional imaging to the operating room. J Urol. 2014;192(6):1810–1816.
  • van Den Berg NS, Engelen T, Brouwer OR, et al. A pilot study of SPECT/CT-based mixed-reality navigation towards the sentinel node in patients with melanoma or merkel cell carcinoma of a lower extremity. Nucl Med Commun. 2016;37(8):812–817.
  • Rahbar K, Colombo-Benkmann M, Haane C, et al. Intraoperative 3-D mapping of parathyroid adenoma using freehand SPECT. EJNMMI Res. 2012;2(1):51.
  • van Oosterom MN, Meershoek P, KleinJan GH, et al. Navigation of fluorescence cameras during soft tissue surgery—is it possible to use a single navigation setup for various open and laparoscopic urological surgery applications?. J Urol. 2018;199(4):1061–1068.
  • KleinJan GH, van Den Berg NS, van Oosterom MN, et al. Toward (hybrid) navigation of a fluorescence camera in an open surgery setting. J Nucl Med. 2016;57(10):1650–1653.
  • van Oosterom MN, Engelen MA, van Den Berg NS, et al. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study. J Biomed Opt. 2016;21(8):086008.
  • Wendler T, Herrmann K, Schnelzer A, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37(8):1452–1461.
  • Bluemel C, Matthies P, Herrmann K, et al. 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications. Expert Rev Med Devices. 2016;13(4):339–351.
  • Hartl A, Shakir DI, Kojchev R, et al. Freehand SPECT reconstructions using look up tables. Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling. 2012. International Society for Optics and Photonics.
  • Hartl A, Shakir DI, Lasser T, et al. Detection models for freehand spect reconstruction. Phys Med Biol. 2015;60(3):1031.
  • KleinJan GH, Karakullukcu B, Klop WMC, et al. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res. 2017 Aug 17;7(1):65.
  • Bluemel C, Schnelzer A, Okur A, et al. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40(11):1656–1661.
  • Heuveling DA, van Weert S, Karagozoglu KH, et al. Evaluation of the use of freehand SPECT for sentinel node biopsy in early stage oral carcinoma. Oral Oncol. 2015;51(3):287–290.
  • Pouw B, de Wit-van der Veen LJ, van Duijnhoven F, et al. Intraoperative 3D navigation for single or multiple 125i-seed localization in breast-preserving cancer surgery. Clin Nucl Med. 2016 May;41(5):e216–20.
  • Opfermann T, Winkens T, Freesmeyer M, et al. Radiation exposure of the investigator’s hand during fusion imaging of the thyroid with 99mTcO4-free-hand SPECT and ultrasound. Radiat Prot Dosimetry. 2015;168(4):531–536.
  • Markus A, Ray ASC, Bolla D, et al. Sentinel lymph node biopsy in endometrial and cervical cancers using freehand SPECT—first experiences. J Gynecological Surg. 2016;13(4):499–506.
  • Müller J, Putora PM, Schneider T, et al. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions. Interact Cardiovasc Thorac Surg. 2016;23(3):345–350.
  • Fuerst B, Sprung J, Pinto F, et al. First robotic SPECT for minimally invasive sentinel lymph node mapping. IEEE Trans Med Imaging. 2016;35(3):830–838.
  • Bluemel C, Herrmann K, Kübler A, et al. Intraoperative 3-D imaging improves sentinel lymph node biopsy in oral cancer. Eur J Nucl Med Mol Imaging. 2014;41(12):2257–2264.
  • Bluemel C, Herrmann K, Müller–Richter U, et al. Freehand SPECT‐guided sentinel lymph node biopsy in early oral squamous cell carcinoma. Head Neck. 2014;36(11):E112–E116.
  • Mandapathil M, Teymoortash A, Heinis J, et al. Freehand SPECT for sentinel lymph node detection in patients with head and neck cancer: first experiences. Acta Otolaryngol. 2014 Jan;134(1):100–104.
  • Schilling C, Gnansegaran G, Thavaraj S, et al. Intraoperative sentinel node imaging versus SPECT/CT in oral cancer–A blinded comparison. Eur J Surg Oncol. 2018;44(12):1901–1907.
  • Mihaljevic A, Rieger A, Belloni B, et al. Transferring innovative freehand SPECT to the operating room: first experiences with sentinel lymph node biopsy in malignant melanoma. Eur J Surg Oncol. 2014;40(1):42–48.
  • Sulzbacher L, Klinger M, Scheurecker C, et al. Clinical usefulness of a novel freehand 3D imaging device for radio-guided intraoperative sentinel lymph node detection in malignant melanoma. Clin Nucl Med. 2015 Sep;40(9):e436–40.
  • Castillo V, Rioja ME, Diaz-Laugart E, et al. Intraoperative demonstration of 3D tumor localization using freehand SPECT in a duodenum NET patient. J Nucl Med. 2012;53(supplement 1):1252.
  • Rietbergen D, van der Hage J, Meershoek P, et al. FreehandSPECT with 99mTc-HDP can be used to guide percutaneous biopsy of skeletal lesions detected on bone scintigraphy. Eur J Surg Oncol. 2019;45(2):e87.
  • Wendler T, Traub J, Ziegler SI, et al., editors. Navigated three dimensional beta probe for optimal cancer resection. International Conference on Medical Image Computing and Computer-Assisted Intervention; 2006: Copenhagen, Denmark: Springer.
  • Welling MM, Spa SJ, van Willigen DM, et al. In vivo stability of supramolecular host–guest complexes monitored by dual-isotope multiplexing in a pre-targeting model of experimental liver radioembolization. J Control Release. 2019;293:126–134.
  • Goorden MC, van der Have F, Kreuger R, et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med. 2013;54(2):306–312.
  • Dauer LT, Thornton C, Miodownik D, et al. Radioactive seed localization with 125I for nonpalpable lesions prior to breast lumpectomy and/or excisional biopsy: methodology, safety, and experience of initial year. Health Phys. 2013;105(4):356–365.
  • Meinhardt W, van der Poel H, Valdés Olmos R, et al. Laparoscopic sentinel lymph node biopsy for prostate cancer: the relevance of locations outside the extended dissection area. In: Prostate cancer. 2012. Doi: 10.1155/2012/751753
  • Tipnis S, Nagarkar V, Shestakova I, et al. Feasibility of a beta-gamma digital imaging probe for radioguided surgery. IEEE Trans Nucl Sci. 2004;51(1):110–116.
  • Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging. 2017;5(4):323–341.
  • Gambini JP, Quinn TP. Hybrid tracers and devices for intraoperative imaging: the future for radioguided surgery? Clin Transl Imaging. 2016;4(5):343–351.
  • van Leeuwen FW, Hardwick JC, van Erkel AR. Luminescence-based imaging approaches in the field of interventional molecular imaging. Radiology. 2015;276(1):12–29.
  • Stoffels I, Dissemond J, Pöppel T, et al. Intraoperative fluorescence imaging for sentinel lymph node detection: prospective clinical trial to compare the usefulness of indocyanine green vs technetium Tc 99m for identification of sentinel lymph nodes. JAMA Surg. 2015;150(7):617–623.
  • KleinJan GH, van Werkhoven E, van Den Berg NS, et al. The best of both worlds: a hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur J Nucl Med Mol Imag. 2018 Apr 25;45(11):1915–1925.
  • Schaafsma BE, Verbeek FP, Rietbergen DD, et al. Clinical trial of combined radio‐and fluorescence‐guided sentinel lymph node biopsy in breast cancer. Br J Surg. 2013;100(8):1037–1044.
  • Paredes P, Vidal-Sicart S, Campos F, et al. Role of ICG-99m Tc-nanocolloid for sentinel lymph node detection in cervical cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2017;44(11):1853–1861.
  • Brouwer OR, van Den Berg NS, Matheron HM, et al. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65(3):600–609.
  • KleinJan GH, van Den Berg NS, Brouwer OR, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014 Dec;66(6):991–998.
  • Stoffels I, Leyh J, Pöppel T, et al. Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-99m Tc-nanocolloid hybrid tracer versus 99m Tc-nanocolloid. Eur J Nucl Med Mol Imaging. 2015;42(11):1631–1638.
  • Christensen A, Juhl K, Charabi B, et al. Feasibility of real-time near-infrared fluorescence tracer imaging in sentinel node biopsy for oral cavity cancer patients. Ann Surg Oncol. 2016;23(2):565–572.
  • KleinJan G, Brouwer O, Mathéron HM, et al. Hybrid radioguided occult lesion localization (hybrid ROLL) of 18F-FDG-avid lesions using the hybrid tracer indocyanine green-99mTc-nanocolloid. Revista Española de Medicina Nuclear e Imagen Molecular (English Edition). 2016;35(5):292–297.
  • van Den Berg NS, Simon H, Kleinjan GH, et al. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery [Article]. Eur J Nucl Med Mol Imaging. 2015 Oct;42(11):1639–1647.
  • Vidal-Sicart S, Seva A, Campos F, et al. Clinical use of an opto-nuclear probe for hybrid sentinel node biopsy guidance: first results. Int J Comput Assist Radiol Surg. 2019 Feb;14(2):409-416. DOI: 10.1007/s11548-018-1816-5.
  • Poumellec M, Dejode M, Figl A, et al. Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections. Gynecol Obstet Fertil. 2016;44(4):207–210.
  • Lees J, Bugby S, Alqahtani M, et al. A multimodality hybrid gamma-optical camera for intraoperative imaging. Sensors. 2017;17(3):554.
  • Ciarrocchi E, Belcari N. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys. 2017;4(1):14.
  • Das S, Thorek DL, Grimm J. Cerenkov imaging. Adv Cancer Res. 2014;124:213–234. Elsevier.
  • Spinelli AE, Boschi F. Novel biomedical applications of Cerenkov radiation and radioluminescence imaging. Phys Med. 2015;31(2):120–129.
  • Cherenkov PA. Visible emission of clean liquids by action of γ radiation. Dokl Akad Nauk SSSR. 1934;2:451.
  • Jelley J. Cerenkov radiation and its applications. Br J Appl Phys. 1955;6(7):227.
  • Glaser AK, Zhang R, Andreozzi JM, et al. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications. Phys Med Biol. 2015;60(17):6701.
  • Thorek DL, Robertson R, Bacchus WA, et al. Cerenkov imaging-a new modality for molecular imaging. Am J Nucl Med Mol Imaging. 2012;2(2):163.
  • Chin PT, Welling MM, Meskers SC, et al. Optical imaging as an expansion of nuclear medicine: cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–1291.
  • Gill RK, Mitchell GS, Cherry SR. Computed Cerenkov luminescence yields for radionuclides used in biology and medicine. Phys Med Biol. 2015;60(11):4263.
  • Boschi F, E Spinelli A. Cerenkov luminescence imaging at a glance. Current Mol Imaging. 2014;3(2):106–117.
  • Thorek DL, Riedl CC, Grimm J. Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med. 2014;55(1):95–98.
  • Spinelli AE, Ferdeghini M, Cavedon C, et al. First human cerenkography. J Biomed Opt. 2013;18(2):020502.
  • Jarvis LA, Zhang R, Gladstone DJ, et al. Cherenkov video imaging allows for the first visualization of radiation therapy in real time. Int J Radiat Oncol* Biol* Phys. 2014;89(3):615–622.
  • Hu H, Cao X, Kang F, et al. Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results. Eur Radiol. 2015;25(6):1814–1822.
  • Yang Y, Biswal NC, Wang T, et al. Potential role of a hybrid intraoperative probe based on OCT and positron detection for ovarian cancer detection and characterization. Biomed Opt Express. 2011;2(7):1918–1930.
  • Gamelin J, Yang Y, Biswal N, et al. A prototype hybrid intraoperative probe for ovarian cancer detection. Opt Express. 2009;17(9):7245–7258.
  • Pani R, Pellegrini R, Cinti M, et al. Integrated ultrasound and gamma imaging probe for medical diagnosis. J Instrum. 2016;11(03):C03037.
  • Okur A, Hennersperger C, Runyan B, et al., editors. FhSPECT-US guided needle biopsy of sentinel lymph nodes in the axilla: is it feasible? International Conference on Medical Image Computing and Computer-Assisted Intervention; 2014: Boston, MA, USA: Springer.
  • Freesmeyer M, Opfermann T, Winkens T. Hybrid integration of real-time US and freehand SPECT: proof of concept in patients with thyroid diseases. Radiology. 2014;271(3):856–861.
  • Bluemel C, Kirchner P, Kajdi GW, et al. Localization of parathyroid adenoma with real-time ultrasound: freehand SPECT fusion. Clin Nucl Med. 2016;41(3):e141–2.
  • de Bree R, Pouw B, Heuveling DA, et al. Fusion of freehand SPECT and ultrasound to perform ultrasound-guided fine-needle aspiration cytology of sentinel nodes in head and neck cancer. AJNR Am J Neuroradiol. 2015 Nov;36(11):2153–2158.
  • Freesmeyer M, Winkens T, Opfermann T, et al. Real-time ultrasound and freehand-SPECT. Nuklearmed Nucl Med. 2014;53(06):259–264.
  • Bluemel C, Safak G, Cramer A, et al. Fusion of freehand SPECT and ultrasound: first experience in preoperative localization of sentinel lymph nodes. Eur J Nucl Med Mol Imaging. 2016;43(13):2304–2312.
  • Horn T, Krönke M, Rauscher I, et al. Single lesion on prostate-specific membrane antigen-ligand positron emission tomography and low prostate-specific antigen are prognostic factors for a favorable biochemical response to prostate-specific membrane antigen-targeted radioguided surgery in recurrent prostate cancer. Eur Urol. 2019 Apr 12. pii: S0302-2838(19)30278-7. doi: 10.1016/j.eururo.2019.03.045.
  • Schottelius M, Wurzer A, Wissmiller K, et al. Synthesis and preclinical characterization of the PSMA-targeted hybrid tracer PSMA-I&F for nuclear and fluorescence imaging of prostate cancer. J Nucl Med. 2019;60(1):71–78.
  • Santini C, Kuil J, Bunschoten A, et al. Evaluation of a fluorescent and radiolabeled hybrid somatostatin analog in vitro and in mice bearing H69 neuroendocrine xenografts. J Nucl Med. 2016;57(8):1289–1295.
  • Wang X, Aldrich MB, Marshall MV, et al. Preclinical characterization and validation of a dual-labeled trastuzumab-based imaging agent for diagnosing breast cancer. Chin J Cancer Res. 2015;27(1):74.
  • Hekman MC, Boerman OC, de Weijert M, et al. Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin Cancer Res. 2016;22(18):4634–4642.
  • Brouwer OR, Klop WMC, Buckle T, et al. Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann Surg Oncol. 2012;19(6):1988–1994.
  • Vidal-Sicart S, Orsini F, Giammarile F, et al. Radioguided surgery for malignant melanoma. In: Strauss H., Mariani G., Volterrani D, eds. Nuclear oncology: from pathophysiology to clinical applications. Switzerland: Springer 2016. p. 1–33.
  • Bunschoten A, van Den Berg NS, Olmos RAV, et al. Tracers applied in radioguided surgery. In: Herrmann K, Nieweg OE, Povoski SP, eds. Radioguided Surgery. Switzerland: Springer International Publishing; 2016. p. 75–101. DOI: 10.1007/978-3-319-26051-8_5.
  • Franc BL, Mari C, Johnson D, et al. The role of a positron-and high-energy gamma photon probe in intraoperative localization of recurrent melanoma. Clin Nucl Med. 2005;30(12):787–791.
  • Mancini-Terracciano C, Donnarumma R, Bencivenga G, et al. Feasibility of beta-particle radioguided surgery for a variety of “nuclear medicine” radionuclides. Phys Med. 2017;43:127–133.
  • Kumar R, Mittal BR, Bhattacharya A, et al. Diagnostic performance of real-time robotic arm-assisted 18 f-fdg pet/ct-guided percutaneous biopsy in metabolically active abdominal and pelvic lesions. European Journal Of Nuclear Medicine and Molecular Imaging. 2019;46(4):838-847.
  • Van Oosterom MN, Meershoek P, Welling MM, et al. Extending the hybrid surgical guidance concept with freehand fluorescence tomography. Ieee Transactions on Medical Imaging 2019. DOI: 10.1109/TMI.2019.2924254
  • van Manen L, Dijkstra J, Boccara C, et al. The clinical usefulness of optical coherence tomography during cancer interventions. J Cancer Res Clin Oncol. 2018;144(10):1967–1990.
  • van Leeuwen FW, Valdés-Olmos R, Buckle T, et al. Hybrid surgical guidance based on the integration of radionuclear and optical technologies. Br J Radiol. 2016;89(1062):20150797.