340
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device

ORCID Icon, , , , & ORCID Icon
Pages 721-730 | Received 02 Jan 2020, Accepted 11 Jun 2020, Published online: 30 Jun 2020

References

  • Ganslandt O, Behari S, Gralla J, et al. Neuronavigation: concept, techniques and applications. Neurol India. 2002;50(3):244.
  • Schulz C, Waldeck S, Mauer UM. Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract. 2012;2012:1–9.
  • Yasargil MG. Microneurosurgery: microneurosurgery of CNS tumors. Stuttgart, Germany: Georg Thieme Verlag; 1996.
  • Sutherland GR, Maddahi Y, Gan LS, et al. Robotics in the neurosurgical treatment of glioma. Surg Neurol Int. 2015;6(Suppl 1):S1.
  • Moccia S, Foti S, Routray A, et al. Toward improving safety in neurosurgery with an active handheld instrument. Ann Biomed Eng. 2018;46(10):1450–1464.
  • Zhang T, Gong L, Wang S, et al. Hand-Held instrument with integrated parallel mechanism for active tremor compensation during microsurgery. Ann Biomed Eng. 2020;48(1):413–425.
  • Bethea BT, Okamura AM, Kitagawa M, et al. Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Techn. 2004;14(3):191–195.
  • Das H, Zak H, Johnson J, et al. Evaluation of a telerobotic system to assist surgeons in microsurgery. Comput Aided Surg. 1999;4(1):15–25.
  • Greer AD, Newhook PM, Sutherland GR. Human–machine interface for robotic surgery and stereotaxy. IEEE ASME Trans Mechatron. 2008;13(3):355–361.
  • Sutherland GR. Surgeon at a workstation: information age surgery. Cureus. 2012;4:e40.
  • Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol. 2009;19(1):102.
  • Talasaz A, Patel RV. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization. IEEE Trans Haptics. 2012;6(2):217–228.
  • Bae JH, Ploch CJ, Lin MA, et al., editors. Display of needle tip contact forces for steering guidance. 2016 IEEE haptics symposium (HAPTICS); IEEE; Philadelphia, Pennsylvania; 2016.
  • Tholey G, Desai JP, editors. A modular, automated laparoscopic grasper with three-dimensional force measurement capability. Proceedings 2007 IEEE international conference on robotics and automation; IEEE; Roma, Italy; 2007.
  • Tholey G, Desai JP, Castellanos AE. Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg. 2005;241(1):102.
  • Hayward V, Gregorio P, Astley O, et al. Freedom-7: a high fidelity seven axis haptic device with application to surgical training. In: Experimental robotics V. Berlin, Heidelberg: Springer; 1998. p. 443–456.
  • Massie TH, Salisbury JK, editors. The phantom haptic interface: a device for probing virtual objects. Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems; Chicago (IL); 1994.
  • Van der Linde RQ, Lammertse P, Frederiksen E, et al., editors. The HapticMaster, a new high-performance haptic interface. Proc EuroHaptics. 2002. Available from: http://lars.mec.ua.pt/public/LAR%20Projects/Humanoid/2012_PedroCruz/BIBLIOGRAPHY/HapticMaster_vanderlinde.pdf
  • Zareinia K, Maddahi Y, Ng C, et al. Performance evaluation of haptic hand‐controllers in a robot‐assisted surgical system. Int J Med Rob Comput Assisted Surg. 2015;11(4):486–501.
  • Tobergte A, Helmer P, Hagn U, et al., editors. The sigma. 7 haptic interface for MiroSurge: a new bi-manual surgical console. 2011 IEEE/RSJ international conference on intelligent robots and systems; IEEE; San Francisco, California; 2011.
  • Garrec P, Friconneau J-P, Louveau F, editors. Virtuose 6D: a new force-control master arm using innovative ball-screw actuators. Proceedings of OSR2004–35th symposium on robotics; Mar; Paris (France); 2004.
  • Panarese A, Edin BB. A modified low-cost haptic interface as a tool for complex tactile stimulation. Med Eng Phys. 2011;33(3):386–390.
  • Hoshyarmanesh HZ, Lama S, Sutherland GR. Development of a microsurgery-specific haptic hand-controller and evaluation of intrinsic kinematic performance. IEEE Trans Rob. 2020. under review.
  • Hoshyarmanesh H, Zareinia, K, Lama S, et al. Evaluation of haptic devices and end-users: Novel performance metrics in tele-robotic microsurgery. Int J Med Robotics Comput Assist Surg. 2020;e2101. Available from: https://doi.org/10.1002/rcs.2101
  • Sutherland GR, Hoshyarmanesh H, Zareinia K, et al. Microsurgery-specific haptic hand controller WO2019126863, International Application No.PCT/CA2018/000243; Dec 28, 2018.
  • Baghdadi A, Hussein AA, Ahmed Y, et al. A computer vision technique for automated assessment of surgical performance using surgeons’ console-feed videos. Int J Comput Assist Radiol Surg. 2019;14(4):697–707.
  • Darzi A, Mackay S. Assessment of surgical competence. BMJ Qual Saf. 2001;10(suppl 2):ii64–ii69.
  • Ghasemloonia A, Baxandall S, Zareinia K, et al. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery. Comput Biol Med. 2016;78:9–17.
  • Ghasemloonia A, Maddahi Y, Zareinia K, et al. Surgical skill assessment using motion quality and smoothness. J Surg Educ. 2017;74(2):295–305.
  • Maddahi Y, Ghasemloonia A, Zareinia K, et al. Quantifying force and positional frequency bands in neurosurgical tasks. J Robot Surg. 2016;10(2):97–102.
  • Kumar R, Jog A, Vagvolgyi B, et al. Objective measures for longitudinal assessment of robotic surgery training. J Thorac Cardiovasc Surg. 2012;143(3):528–534.
  • Sainsbury B, Lacki M, Shahait M, et al. Evaluation of a virtual reality percutaneous nephrolithotomy (PCNL) surgical simulator. Front Rob AI. 2019;6:145.
  • Friedrich S, Konietschke F, Pauly M Analysis of Multivariate Data and Repeated Measures Designs with the R Package MANOVA. RM. arXiv preprint arXiv:180108002. 2018.
  • Slack P, Coulson C, Ma X, et al. The effect of operating time on surgeons’ muscular fatigue. Ann R Coll Surg Engl. 2008;90(8):651–657.
  • Sugiyama T, Lama S, Gan LS, et al. Forces of tool-tissue interaction to assess surgical skill level. JAMA Surg. 2018;153(3):234–242.
  • Uemura M, Tomikawa M, Kumashiro R, et al. Analysis of hand motion differentiates expert and novice surgeons. J Surg Res. 2014;188(1):8–13.
  • Gallagher AG, Ritter EM, Champion H, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg. 2005;241(2):364.
  • Baghdadi A, Cavuoto LA, Jones-Farmer A, et al. Monitoring worker fatigue using wearable devices: a case study to detect changes in gait parameters. J Qual Technol. 2019:1–25. DOI:10.1080/00224065.2019.1640097
  • Baghdadi A, Megahed FM, Esfahani ET, et al. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task. Ergonomics. 2018;61(8):1116–1129.
  • Gorantla KR, Esfahani ET, editors. Surgical skill assessment using motor control features and hidden Markov model. 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC); IEEE; Berlin, Germany; 2019.
  • Memar AH, Esfahani ET. Objective assessment of human workload in physical human-robot cooperation using brain monitoring. ACM Trans Hum-Robot Inter (THRI). 2019;9(2):1–21.
  • Netravali NA, Shen F, Park Y, et al. A perspective on robotic assistance for knee arthroplasty. Adv Orthop. 2013;2013. Article ID 970703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.