740
Views
11
CrossRef citations to date
0
Altmetric
Review

Music perception and training for pediatric cochlear implant users

ORCID Icon & ORCID Icon
Pages 1193-1206 | Received 07 Aug 2020, Accepted 21 Oct 2020, Published online: 30 Oct 2020

References

  • WHO. 2020. Deafness and hearing loss. World Health Organization. Fact sheets Web site. Accessed 2020 Jul 7. Available from: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
  • Lin FR, Yaffe K, Xia J, et al. Hearing loss and cognitive decline in older adults. JAMA Intern Med. 2013;173(4):293–299.
  • Castiglione A, Benatti A, Velardita C, et al. Aging, cognitive decline and hearing loss: effects of auditory rehabilitation and training with hearing aids and cochlear implants on cognitive function and depression among older adults. Audiol Neurootol. 2016;21(Suppl 1):21–28.
  • Maharani A, Pendleton N, Leroi I. Hearing Impairment, Loneliness, Social Isolation, and Cognitive Function: longitudinal Analysis Using English Longitudinal Study on Ageing. Am J Geriatr Psychiatry. 2019;27(12):1348–1356.
  • Clinkard D, Barbic S, Amoodi H, et al. The economic and societal benefits of adult cochlear implant implantation: A pilot exploratory study. Cochlear Implants Int. 2015;16(4):181–185.
  • Jiam NT, Li C, Agrawal Y. Hearing loss and falls: A systematic review and meta-analysis. Laryngoscope. 2016;126(11):2587–2596.
  • Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res. 2008;242(1–2):3–21.
  • Coco A, Epp SB, Fallon JB, et al. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hear Res. 2007;225(1–2):60–70.
  • Kamakura T, O’Malley JT, Nadol JB Jr. Preservation of cells of the organ of corti and innervating dendritic processes following cochlear implantation in the human: an immunohistochemical study. Otol Neurotol. 2018;39(3):284–293.
  • Svirsky MA, Robbins AM, Kirk KI, et al. Language development in profoundly deaf children with cochlear implants. Psychol Sci. 2000;11(2):153–158.
  • Gifford RH, Shallop JK, Peterson AM. Speech recognition materials and ceiling effects: considerations for cochlear implant programs. Audiol Neurootol. 2008;13(3):193–205.
  • Francis HW, Koch ME, Wyatt JR, et al. Trends in educational placement and cost-benefit considerations in children with cochlear implants. Arch Otolaryngol Head Neck Surg. 1999;125(5):499–505.
  • Holder JT, Reynolds SM, Sunderhaus LW, et al. Current profile of adults presenting for preoperative cochlear implant evaluation. Trends Hear. 2018;22:2331216518755288.
  • Sorkin DL, Buchman CA. Cochlear implant access in six developed countries. Otol Neurotol. 2016;37(2):e161–164.
  • Martines F, Martines E, Ballacchino A, et al. Speech perception outcomes after cochlear implantation in prelingually deaf infants: the Western Sicily experience. Int J Pediatr Otorhinolaryngol. 2013;77(5):707–713.
  • Murphy J, Summerfield AQ, O’Donoghue GM, et al. Spatial hearing of normally hearing and cochlear implanted children. Int J Pediatr Otorhinolaryngol. 2011;75(4):489–494.
  • Chang YS, Hong SH, Kim EY, et al. Benefit and predictive factors for speech perception outcomes in pediatric bilateral cochlear implant recipients. Braz J Otorhinolaryngol. 2019;85(5):571–577.
  • Causon A, Verschuur C, Newman TA. A retrospective analysis of the contribution of reported factors in cochlear implantation on hearing preservation outcomes. Otol Neurotol. 2015;36(7):1137–1145.
  • Bruce IA, Todt I. Hearing preservation cochlear implant surgery. Adv Otorhinolaryngol. 2018;81:66–73.
  • Sweeney AD, Hunter JB, Carlson ML, et al. Durability of hearing preservation after cochlear implantation with conventional-length electrodes and scala tympani insertion. Otolaryngol Head Neck Surg. 2016;154(5):907–913.
  • Snels C, IntHout J, Mylanus E, et al. Hearing preservation in cochlear implant surgery: a meta-analysis. Otol Neurotol. 2019;40(2):145–153.
  • Selleck AM, Park LR, Brown KD. Factors influencing pediatric cochlear implant outcomes: carolina sibling study. Otol Neurotol. 2019;40(9):1148–1152.
  • Chakravorti S, Noble JH, Gifford RH, et al. Further evidence of the relationship between cochlear implant electrode positioning and hearing outcomes. Otol Neurotol. 2019;40(5):617–624.
  • Kuthubutheen J, Coates H, Rowsell C, et al. The role of extended preoperative steroids in hearing preservation cochlear implantation. Hear Res. 2015;327:257–264.
  • Sweeney AD, Carlson ML, Zuniga MG, et al. Impact of perioperative oral steroid use on low-frequency hearing preservation after cochlear implantation. Otol Neurotol. 2015;36(9):1480–1485.
  • Glennon E, Svirsky MA, Froemke RC. Auditory cortical plasticity in cochlear implant users. Curr Opin Neurobiol. 2020;60:108–114.
  • Limb CJ. Cochlear implant-mediated perception of music. Curr Opin Otolaryngol Head Neck Surg. 2006;14(5):337–340.
  • Jiam NT, Caldwell MT, Limb CJ. What does music sound like for a cochlear implant user? Otol Neurotol. 2017;38(8):e240–e247.
  • Mick P, Kawachi I, Lin FR. The association between hearing loss and social isolation in older adults. Otolaryngol Head Neck Surg. 2014;150(3):378–384.
  • Looi V, Rutledge K, Prvan T. Music appreciation of adult hearing aid users and the impact of different levels of hearing loss. Ear Hear. 2019;40(3):529–544.
  • Feldmann H, Kumpf W. [Listening to music in hearing loss with and without a hearing aid]. Laryngol Rhinol Otol (Stuttg). 1988;67(10):489–497.
  • MacDonald RAR. Music, health, and well-being: a review. Int J Qual Stud Health Well-being. 2013;8:20635.
  • Jiam NT, Caldwell M, Deroche ML, et al. Voice emotion perception and production in cochlear implant users. Hear Res. 2017;352:30–39.
  • Nakata T, Trehub SE, Kanda Y. Effect of cochlear implants on children’s perception and production of speech prosody. J Acoust Soc Am. 2012;131(2):1307–1314.
  • Wei CG, Cao K, Zeng FG. Mandarin tone recognition in cochlear-implant subjects. Hear Res. 2004;197(1–2):87–95.
  • Lee DS, Lee JS, Oh SH, et al. Cross-modal plasticity and cochlear implants. Nature. 2001;409(6817):149–150.
  • Leigh JR, Dettman SJ, Dowell RC. Evidence-based guidelines for recommending cochlear implantation for young children: audiological criteria and optimizing age at implantation. Int J Audiol. 2016;55(Suppl 2):S9–S18.
  • Ching TY, Dillon H, Marnane V, et al. Outcomes of early- and late-identified children at 3 years of age: findings from a prospective population-based study. Ear Hear. 2013;34(5):535–552.
  • Jiam NT, Caldwell MT, Limb CJ. Music. In: Reference module in neuroscience and biobehavioral psychology. Elsevier; 2017. Available from: https://www.sciencedirect.com/science/article/pii/B9780128093245028820
  • Patel AD. Language, music, syntax and the brain. Nat Neurosci. 2003;6(7):674–681.
  • Kraus N, White-Schwoch T. Neurobiology of everyday communication: what have we learned from music? Neuroscientist. 2017;23(3):287–298.
  • Zhao TC, Kuhl PK. Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proc Natl Acad Sci U S A. 2016;113(19):5212–5217.
  • Whitehead JC, Armony JL. Singing in the brain: neural representation of music and voice as revealed by fMRI. Hum Brain Mapp. 2018;39(12):4913–4924.
  • Shannon RV. Speech and music have different requirements for spectral resolution. Int Rev Neurobiol. 2005;70:121–134.
  • Galvin JJ 3rd, Fu QJ, Nogaki G. Melodic contour identification by cochlear implant listeners. Ear Hear. 2007;28(3):302–319.
  • Grey JM. Multidimensional perceptual scaling of musical timbres. J Acoust Soc Am. 1977;61(5):1270–1277.
  • Macherey O, Delpierre A. Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study. Ear Hear. 2013;34(4):426–436.
  • Limb CJ, Roy AT. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear Res. 2014;308:13–26.
  • Looi V, McDermott H, McKay C, et al. Music perception of cochlear implant users compared with that of hearing aid users. Ear Hear. 2008;29(3):421–434.
  • McKay CM, Henshall KR, Hull AE. The effect of rate of stimulation on perception of spectral shape by cochlear implantees. J Acoust Soc Am. 2005;118(1):386–392.
  • Greenwood DD. A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am. 1990;87(6):2592–2605.
  • Roy AT, Jiradejvong P, Carver C, et al. Assessment of sound quality perception in cochlear implant users during music listening. Otol Neurotol. 2012;33(3):319–327.
  • Kong YY, Cruz R, Jones JA, et al. Music perception with temporal cues in acoustic and electric hearing. Ear Hear. 2004;25(2):173–185.
  • Looi V, Radford CJ. A comparison of the speech recognition and pitch ranking abilities of children using a unilateral cochlear implant, bimodal stimulation or bilateral hearing aids. Int J Pediatr Otorhinolaryngol. 2011;75(4):472–482.
  • McDermott HJ. Music perception with cochlear implants: a review. Trends Amplif. 2004;8(2):49–82.
  • Snel-Bongers J, Briaire JJ, Vanpoucke FJ, et al. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation. Ear Hear. 2012;33(3):367–376.
  • Penninger RT, Limb CJ, Vermeire K, et al. Experimental assessment of polyphonic tones with cochlear implants. Otol Neurotol. 2013;34(7):1267–1271.
  • Noble JH, Gifford RH, Hedley-Williams AJ, et al. Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol. 2014;19(6):400–411.
  • Chari DA, Jiradejvong P, Limb CJ. Tripolar stimulation improves polyphonic pitch detection in cochlear implant users. Otol Neurotol. 2019;40(1):38–46.
  • Wurfel W, Lanfermann H, Lenarz T, et al. Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res. 2014;316:65–72.
  • Ketten DR, Skinner MW, Wang G, et al. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol Suppl. 1998;175:1–16.
  • Roy AT, Penninger RT, Pearl MS, et al. Deeper cochlear implant electrode insertion angle improves detection of musical sound quality deterioration related to bass frequency removal. Otol Neurotol. 2016;37(2):146–151.
  • Adunka O, Kiefer J. Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg. 2006;135(3):374–382.
  • Heng J, Cantarero G, Elhilali M, et al. Impaired perception of temporal fine structure and musical timbre in cochlear implant users. Hear Res. 2011;280(1–2):192–200.
  • Jiam NT, Pearl MS, Carver C, et al. Flat-panel CT imaging for individualized pitch mapping in cochlear implant users. Otol Neurotol. 2016;37(6):672–679.
  • Johnson DH. The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am. 1980;68(4):1115–1122.
  • Zeng FG. Temporal pitch in electric hearing. Hear Res. 2002;174(1–2):101–106.
  • Hong RS, Turner CW. Sequential stream segregation using temporal periodicity cues in cochlear implant recipients. J Acoust Soc Am. 2009;126(1):291–299.
  • Tang Q, Benitez R, Zeng FG. Spatial channel interactions in cochlear implants. J Neural Eng. 2011;8(4):046029.
  • Chatterjee M, Oberzut C. Detection and rate discrimination of amplitude modulation in electrical hearing. J Acoust Soc Am. 2011;130(3):1567–1580.
  • Magnusson L. Comparison of the fine structure processing (FSP) strategy and the CIS strategy used in the MED-EL cochlear implant system: speech intelligibility and music sound quality. Int J Audiol. 2011;50(4):279–287.
  • Laneau J, Wouters J, Moonen M. Improved music perception with explicit pitch coding in cochlear implants. Audiol Neurootol. 2006;11(1):38–52.
  • Throckmorton CS, Selin Kucukoglu M, Remus JJ, et al. Acoustic model investigation of a multiple carrier frequency algorithm for encoding fine frequency structure: implications for cochlear implants. Hear Res. 2006;218(1–2):30–42.
  • Auinger AB, Riss D, Liepins R, et al. Masking release with changing fundamental frequency: electric acoustic stimulation resembles normal hearing subjects. Hear Res. 2017;350:226–234.
  • Kong YY, Mullangi A, Marozeau J, et al. Temporal and spectral cues for musical timbre perception in electric hearing. J Speech Lang Hear Res. 2011;54(3):981–994.
  • Gfeller K, Witt S, Adamek M, et al. Effects of training on timbre recognition and appraisal by postlingually deafened cochlear implant recipients. J Am Acad Audiol. 2002;13(3):132–145.
  • Jiam NT, Deroche ML, Jiradejvong P, et al. A randomized controlled crossover study of the impact of online music training on pitch and timbre perception in cochlear implant users. J Assoc Res Otolaryngol. 2019;20(3):247–262.
  • Shannon RV. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res. 1983;11(2):157–189.
  • Gfeller K, Lansing CR. Melodic, rhythmic, and timbral perception of adult cochlear implant users. J Speech Hear Res. 1991;34(4):916–920.
  • Brockmeier SJ, Fitzgerald D, Searle O, et al. The music perception test: a novel battery for testing music perception of cochlear implant users. Cochlear Implants Int. 2011;12(1):10–20.
  • Limb CJ, Molloy AT, Jiradejvong P, et al. Auditory cortical activity during cochlear implant-mediated perception of spoken language, melody, and rhythm. J Assoc Res Otolaryngol. 2010;11(1):133–143.
  • Kim I, Yang E, Donnelly PJ, et al. Preservation of rhythmic clocking in cochlear implant users: a study of isochronous versus anisochronous beat detection. Trends Amplif. 2010;14(3):164–169.
  • Jiam NT, Limb CJ. Rhythm processing in cochlear implant-mediated music perception. Ann N Y Acad Sci. 2019;1453(1):22–28.
  • Hidalgo C, Zecri A, Pesnot-Lerousseau J, et al. Rhythmic abilities of children with hearing loss. Ear Hear. 2020.
  • Vongpaisal T, Trehub SE, Schellenberg EG. Song recognition by children and adolescents with cochlear implants. J Speech Lang Hear Res. 2006;49(5):1091–1103.
  • Han JJ, Suh MW, Park MK, et al. A predictive model for cochlear implant outcome in children with cochlear nerve deficiency. Sci Rep. 2019;9(1):1154.
  • Harris MS, Riggs WJ, Giardina CK, et al. Patterns seen during electrode insertion using intracochlear electrocochleography obtained directly through a cochlear implant. Otol Neurotol. 2017;38(10):1415–1420.
  • Dalbert A, Huber A, Veraguth D, et al. Assessment of cochlear trauma during cochlear implantation using electrocochleography and cone beam computed tomography. Otol Neurotol. 2016;37(5):446–453.
  • Jiam NT, Limb CJ. The impact of round window vs cochleostomy surgical approaches on interscalar excursions in the cochlea: preliminary results from a flat-panel computed tomography study. World J Otorhinolaryngol Head Neck Surg. 2016;2(3):142–147.
  • Hemmingson C, Messersmith JJ. Cochlear implant practice patterns: the U.S. trends with pediatric patients. J Am Acad Audiol. 2018;29(8):722–733.
  • Isaiah A, Vongpaisal T, King AJ, et al. Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J Neurosci. 2014;34(33):11119–11130.
  • Kumpik DP, Campbell C, Schnupp JWH, et al. Re-weighting of sound localization cues by audiovisual training. Front Neurosci. 2019;13:1164.
  • Shukor NFA, Lee J, Seo YJ, et al. Efficacy of music training in hearing aid and cochlear implant users: a systematic review and meta-analysis. Clin Exp Otorhinolaryngol. 2020.
  • Dennis M, Spiegler BJ, Juranek JJ, et al. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2760–2773.
  • Zatorre R, McGill J. Music, the food of neuroscience? Nature. 2005;434(7031):312–315.
  • Kraus N, Skoe E, Parbery-Clark A, et al. Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann N Y Acad Sci. 2009;1169:543–557.
  • Pantev C, Oostenveld R, Engelien A, et al. Increased auditory cortical representation in musicians. Nature. 1998;392(6678):811–814.
  • Watanabe D, Savion-Lemieux T, Penhune VB. The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Exp Brain Res. 2007;176(2):332–340.
  • Moreno S, Marques C, Santos A, et al. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex. 2009;19(3):712–723.
  • Hyde KL, Lerch J, Norton A, et al. Musical training shapes structural brain development. J Neurosci. 2009;29(10):3019–3025.
  • Koelsch S, Wittfoth M, Wolf A, et al. Music perception in cochlear implant users: an event-related potential study. Clin Neurophysiol. 2004;115(4):966–972.
  • Pantev C, Dinnesen A, Ross B, et al. Dynamics of auditory plasticity after cochlear implantation: a longitudinal study. Cereb Cortex. 2006;16(1):31–36.
  • Sucher CM, McDermott HJ. Pitch ranking of complex tones by normally hearing subjects and cochlear implant users. Hear Res. 2007;230(1–2):80–87.
  • Chen JK, Chuang AY, McMahon C, et al. Music training improves pitch perception in prelingually deafened children with cochlear implants. Pediatrics. 2010;125(4):e793–800.
  • Guiraud J, Besle J, Arnold L, et al. Evidence of a tonotopic organization of the auditory cortex in cochlear implant users. J Neurosci. 2007;27(29):7838–7846.
  • Durham D, Park DL, Girod DA. Central nervous system plasticity during hair cell loss and regeneration. Hear Res. 2000;147(1–2):145–159.
  • Welch GF, Saunders J, Edwards S, et al. Using singing to nurture children’s hearing? A pilot study. Cochlear Implants Int. 2015;16(sup3):S63–S70.
  • Di Nardo W, Schinaia L, Anzivino R, et al. Musical training software for children with cochlear implants. Acta Otorhinolaryngol Ital. 2015;35(4):249–257.
  • Yucel E, Sennaroglu G, Belgin E. The family oriented musical training for children with cochlear implants: speech and musical perception results of two year follow-up. Int J Pediatr Otorhinolaryngol. 2009;73(7):1043–1052.
  • Gfeller K, Turner C, Oleson J, et al. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear Hear. 2007;28(3):412–423.
  • Cheng X, Liu Y, Shu Y, et al. Music training can improve music and speech perception in pediatric mandarin-speaking cochlear implant users. Trends Hear. 2018;22:2331216518759214.
  • Wright BA, Fitzgerald MB. Different patterns of human discrimination learning for two interaural cues to sound-source location. Proc Natl Acad Sci U S A. 2001;98(21):12307–12312.
  • Good A, Gordon KA, Papsin BC, et al. Benefits of music training for perception of emotional speech prosody in deaf children with cochlear implants. Ear Hear. 2017;38(4):455–464.
  • Lo CY, Looi V, Thompson WF, et al. Music training for children with sensorineural hearing loss improves speech-in-noise perception. J Speech Lang Hear Res. 2020;63(6):1990–2015.
  • Hidalgo C, Falk S, Schon D. Speak on time! Effects of a musical rhythmic training on children with hearing loss. Hear Res. 2017;351:11–18.
  • Gerken L, Jusczyk PW, Mandel DR. When prosody fails to cue syntactic structure: 9-month-olds’ sensitivity to phonological versus syntactic phrases. Cognition. 1994;51(3):237–265.
  • Jusczyk PW, Houston DM, Newsome M. The beginnings of word segmentation in english-learning infants. Cogn Psychol. 1999;39(3–4):159–207.
  • Geers A, Brenner C, Davidson L. Factors associated with development of speech perception skills in children implanted by age five. Ear Hear. 2003;24(1Suppl):24S–35S.
  • Donaldson GS, Kreft HA. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users. Ear Hear. 2006;27(6):658–677.
  • Vainio M, Jarvikivi J. Focus in production: tonal shape, intensity and word order. J Acoust Soc Am. 2007;121(2):EL55–61.
  • Kochanski G, Grabe E, Coleman J, et al. Loudness predicts prominence: fundamental frequency lends little. J Acoust Soc Am. 2005;118(2):1038–1054.
  • Meister H, Landwehr M, Pyschny V, et al. The perception of sentence stress in cochlear implant recipients. Ear Hear. 2011;32(4):459–467.
  • Moore BC. Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants. Otol Neurotol. 2003;24(2):243–254.
  • Omar R, Henley SM, Bartlett JW, et al. The structural neuroanatomy of music emotion recognition: evidence from frontotemporal lobar degeneration. Neuroimage. 2011;56(3):1814–1821.
  • Rogalsky C, Rong F, Saberi K, et al. Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging. J Neurosci. 2011;31(10):3843–3852.
  • Fu QJ, Galvin JJ 3rd. Maximizing cochlear implant patients’ performance with advanced speech training procedures. Hear Res. 2008;242(1–2):198–208.
  • Hausen M, Torppa R, Salmela VR, et al. Music and speech prosody: a common rhythm. Front Psychol. 2013;4:566.
  • Jentschke S, Koelsch S. Musical training modulates the development of syntax processing in children. Neuroimage. 2009;47(2):735–744.
  • Thompson WF, Schellenberg EG, Husain G. Decoding speech prosody: do music lessons help? Emotion. 2004;4(1):46–64.
  • Ho YC, Cheung MC, Chan AS. Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology. 2003;17(3):439–450.
  • Torppa R, Faulkner A, Laasonen M, et al. Links of prosodic stress perception and musical activities to language skills of children with cochlear implants and normal hearing. Ear Hear. 2020;41(2):395–410.
  • Torppa R, Faulkner A, Huotilainen M, et al. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities. Int J Audiol. 2014;53(3):182–191.
  • Bedoin N, Besombes AM, Escande E, et al. Boosting syntax training with temporally regular musical primes in children with cochlear implants. Ann Phys Rehabil Med. 2018;61(6):365–371.
  • Fu QJ, Zeng FG, Shannon RV, et al. Importance of tonal envelope cues in Chinese speech recognition. J Acoust Soc Am. 1998;104(1):505–510.
  • Abramson AS. Static and dynamic acoustic cues in distinctive tones. Lang Speech. 1978;21(4):319–325.
  • Peng SC, Tomblin JB, Cheung H, et al. Perception and production of mandarin tones in prelingually deaf children with cochlear implants. Ear Hear. 2004;25(3):251–264.
  • Wang W, Zhou N, Xu L. Musical pitch and lexical tone perception with cochlear implants. Int J Audiol. 2011;50(4):270–278.
  • Wang S, Liu B, Dong R, et al. Music and lexical tone perception in Chinese adult cochlear implant users. Laryngoscope. 2012;122(6):1353–1360.
  • He A, Deroche ML, Doong J, et al. Mandarin tone identification in cochlear implant users using exaggerated pitch contours. Otol Neurotol. 2016;37(4):324–331.
  • Tao D, Deng R, Jiang Y, et al. Melodic pitch perception and lexical tone perception in Mandarin-speaking cochlear implant users. Ear Hear. 2015;36(1):102–110.
  • Fu QJ, Hsu CJ, Horng MJ. Effects of speech processing strategy on Chinese tone recognition by nucleus-24 cochlear implant users. Ear Hear. 2004;25(5):501–508.
  • Fu QJ, Galvin JJ 3rd, Wang X, et al. Benefits of music training in mandarin-speaking pediatric cochlear implant users. J Speech Lang Hear Res. 2015;58(1):163–169.
  • Wiefferink CH, Rieffe C, Ketelaar L, et al. Predicting social functioning in children with a cochlear implant and in normal-hearing children: the role of emotion regulation. Int J Pediatr Otorhinolaryngol. 2012;76(6):883–889.
  • Schorr EA, Roth FP, Fox NA. Quality of life for children with cochlear implants: perceived benefits and problems and the perception of single words and emotional sounds. J Speech Lang Hear Res. 2009;52(1):141–152.
  • Hopyan-Misakyan TM, Gordon KA, Dennis M, et al. Recognition of affective speech prosody and facial affect in deaf children with unilateral right cochlear implants. Child Neuropsychol. 2009;15(2):136–146.
  • Scherer KR. Expression of emotion in voice and music. J Voice. 1995;9(3):235–248.
  • Caldwell M, Rankin SK, Jiradejvong P, et al. Cochlear implant users rely on tempo rather than on pitch information during perception of musical emotion. Cochlear Implants Int. 2015;16(Suppl 3):S114–120.
  • Dege F, Schwarzer G. The effect of a music program on phonological awareness in preschoolers. Front Psychol. 2011;2:124.
  • Torppa R, Huotilainen M, Leminen M, et al. Interplay between singing and cortical processing of music: a longitudinal study in children with cochlear implants. Front Psychol. 2014;5:1389.
  • Lo CY, McMahon CM, Looi V, et al. Melodic Contour training and its effect on speech in noise, consonant discrimination, and prosody perception for cochlear implant recipients. Behav Neurol. 2015;2015:352869.
  • Barrett KC, Chatterjee M, Caldwell MT, et al. Perception of child-directed versus adult-directed emotional speech in pediatric cochlear implant users. Ear Hear. 2020;41(5):1372-1382.
  • Petersen B, Mortensen MV, Hansen M, et al. Singing in the key of life: A study on effects of musical ear training after cochlear implantation. Psychomusicol. 2012;22(2):134–151.
  • Spivak LG, Waltzman SB. Performance of cochlear implant patients as a function of time. J Speech Hear Res. 1990;33(3):511–519.
  • Bruns L, Murbe D, Hahne A. Understanding music with cochlear implants. Sci Rep. 2016;6(32026):1-14.
  • Mitani C, Nakata T, Trehub SE, et al. Music recognition, music listening, and word recognition by deaf children with cochlear implants. Ear Hear. 2007;28(2 Suppl):29S–33S.
  • Nakata T, Trehub SE, Mitani C, et al. Music recognition by Japanese children with cochlear implants. J Physiol Anthropol Appl Human Sci. 2005;24(1):29–32.
  • Trehub SE, Vongpaisal T, Nakata T. Music in the lives of deaf children with cochlear implants. Ann N Y Acad Sci. 2009;1169:534–542.
  • Gfeller K, Witt S, Spencer L, et al. Musical involvement and enjoyment of children who use cochlear implants. Volta Rev. 1998;100.
  • Leal MC, Shin YJ, Laborde ML, et al. Music perception in adult cochlear implant recipients. Acta Otolaryngol. 2003;123(7):826–835.
  • Gfeller K, Christ A, Knutson JF, et al. Musical backgrounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients. J Am Acad Audiol. 2000;11(7):390–406.
  • Looi V, McDermott H, McKay C, et al. Comparisons of quality ratings for music by cochlear implant and hearing aid users. Ear Hear. 2007;28(2 Suppl):59S–61S.
  • Gfeller K, Witt S, Woodworth G, et al. Effects of frequency, instrumental family, and cochlear implant type on timbre recognition and appraisal. Ann Otol Rhinol Laryngol. 2002;111(4):349–356.
  • Singh S, Kong YY, Zeng FG. Cochlear implant melody recognition as a function of melody frequency range, harmonicity, and number of electrodes. Ear Hear. 2009;30(2):160–168.
  • Looi V, She J. Music perception of cochlear implant users: a questionnaire, and its implications for a music training program. Int J Audiol. 2010;49(2):116–128.
  • Gfeller K, Knutson JF, Woodworth G, et al. Timbral recognition and appraisal by adult cochlear implant users and normal-hearing adults. J Am Acad Audiol. 1998;9(1):1–19.
  • Boothroyd A. Adapting to changed hearing: the potential role of formal training. J Am Acad Audiol. 2010;21(9):601–611.
  • Gfeller K, Driscoll V, Kenworthy M, et al. Music therapy for preschool cochlear implant recipients. Music Ther Perspect. 2011;29(1):39–49.
  • Moore DR, Rosenberg JF, Coleman JS. Discrimination training of phonemic contrasts enhances phonological processing in mainstream school children. Brain Lang. 2005;94(1):72–85.
  • Fu QJ, Galvin JJ 3rd. Perceptual learning and auditory training in cochlear implant recipients. Trends Amplif. 2007;11(3):193–205.
  • Fuller CD, Galvin JJ 3rd, Maat B, et al. Comparison of two music training approaches on music and speech perception in cochlear implant users. Trends Hear. 2018;22:2331216518765379.
  • Driscoll V, Gfeller K, Tan X, et al. Family involvement in music impacts participation of children with cochlear implants in music education and music activities. Cochlear Implants Int. 2015;16(3):137–146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.