322
Views
1
CrossRef citations to date
0
Altmetric
Review

Physiological principles of Starling-like control of rotary ventricular assist devices

ORCID Icon, , , , &
Pages 1169-1182 | Received 29 May 2020, Accepted 21 Oct 2020, Published online: 02 Nov 2020

References

  • Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376(5):451–460.
  • Kormos RL, Cowger J, Pagani FD, et al. The Society of Thoracic Surgeons Intermacs database annual report: evolving indications, outcomes, and scientific partnerships. J Heart Lung Transplant. 2019;38(2):114–126.
  • Lund LH, Khush KK, Cherikh WS, et al. The registry of the international society for heart and lung transplantation: thirty-fourth adult heart transplantation report—2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1037–1046.
  • Rogers JG, Aaronson KD, Boyle AJ, et al. Continuous Flow Left Ventricular Assist Device Improves Functional Capacity and Quality of Life of Advanced Heart Failure Patients. J Am Coll Cardiol. 2010;55(17):1826–1834.
  • Modica M, Ferratini M, Torri A, et al. Quality of Life and emotional distress early after left ventricular assist device implant: a mixed-method study. Artif Organs. 2015;39(3):220–227.
  • Cowger JA, Naka Y, Aaronson KD, et al. Quality of life and functional capacity outcomes in the MOMENTUM 3 trial at 6 months: A call for new metrics for left ventricular assist device patients. J Heart Lung Transplant. 2017;3:1–10.
  • Granegger M, Schlöglhofer T, Ober H, et al. Daily life activity in patients with left ventricular assist devices. Int J Artif Organs. 2016;39(1):22–27.
  • Ross J, Braunwald E. The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation. 1964;29:739–749.
  • Guyton AC, Hall JE. Textbook of medical physiology. 11th. Guyton AC, Hall JE, editors. Elsevier Saunders. Pennsylvania: Elsevier Saunders; 2006.
  • Starling EH, Visscher MB. The regulation of the energy output of the heart. J Physiol. 1926;62(3):243–261.
  • Guyton AC. Circulatory physiology: cardiac output and its regulation. 1St ed. Guyton AC, editor. Philadelphia: W.B. Saunders; 1963.
  • Sarnoff SJ, Starling EH, Visscher MB. Myocardial contractility as described by ventricular function curves; observations on Starling’s law of the heart. Physiol Rev. 1955;35(1):107–122.
  • Thoratec Corporation. Instructions for use of HeartMate 3. 1006135.B. 2017.
  • Tuzun E, Roberts K, Cohn WE, et al. In vivo evaluation of the heartware centrifugal ventricular assist device. Texas Hear Inst J. 2007;34(4):406–411.
  • Salamonsen RF, Lim E, Moloney J, et al. Anatomy and physiology of left ventricular suction induced by rotary blood pumps. Artif Organs. 2015;39(8):681–690.
  • Lim E, Salamonsen RF, Mansouri M, et al. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study. Artif Organs. 2015;39(2):E24–E35.
  • Moscato F, Granegger M, Edelmayer M, et al. Continuous monitoring of cardiac rhythms in left ventricular assist device patients. Artif Organs. 2014;38(3):191–198.
  • Vollkron M, Voitl P, Ta J, et al. Suction events during left ventricular support and ventricular arrhythmias. J Heart Lung Transplant. 2007;26(8):819–825.
  • Kugler C, Malehsa D, Tegtbur U, et al. Health-related quality of life and exercise tolerance in recipients of heart transplants and left ventricular assist devices: A prospective, comparative study. J Heart Lung Transplant. 2011;30(2):204–210.
  • Burrell A, Hayward C, Mariani J, et al. Clinical utility of invasive exercise hemodynamic evaluation in LVAD patients. J Heart Lung Transplant. 2015;34(12):1635–1637.
  • Levine BD, Cornwell WK, Drazner MH. Factors influencing the rate of flow through continuous-flow left ventricular assist devices at rest and with exercise. JACC Hear Fail. 2014;2(4):331–334.
  • Schmidt T, Bjarnason-Wehrens B, Mommertz S, et al. Changes in Total Cardiac Output and Oxygen Extraction During Exercise in Patients Supported With an HVAD Left Ventricular Assist Device. Artif Organs. 2018;42(7):686–694.
  • Guskov IA, Zatiuriukin AB, Kuznetsov EP, et al. Automatic control systems for the artificial heart and ventricular assist device. Artif Organs. 1987;11(1):47–51.
  • Chen S, Pislaru C, Kinnick RR, et al. Evaluating the dynamic performance of a fibre optic pressure microsensor. Physiol Meas. 2005;26(4):9–13.
  • Petrou A, Monn M, Meboldt M, et al. A novel multi-objective physiological control system for rotary left ventricular assist devices. Ann Biomed Eng. 2017;45(12):2899–2910.
  • Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–129.
  • Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9(5):706–718.
  • Sarnoff SJ, Mitchell JH, Gilmore JP, et al. Homeometric autoregulation in the heart. Circ Res. 1960;8(September):1077–1091.
  • Maslen EH, Bearnson GB, Allaire PE, et al. Feedback control applications in artificial hearts. Control Syst. Mag. IEEE. 1998;18(6):26–34.
  • Stevens MC, Gaddum NR, Pearcy M, et al. Frank-starling control of a left ventricular assist device. 2011 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Boston, MA, USA; 2011. p. 1335–1338. DOI:https://doi.org/10.1109/IEMBS.2011.6090314.
  • Salamonsen RF, Lim E, Gaddum N, et al. Theoretical foundations of a starling-like controller for rotary blood pumps. Artif Organs. 2012;36(9):787–796.
  • Bakouri MA, Salamonsen RF, Savkin AV, et al. A sliding mode-based starling-like controller for implantable rotary blood pumps. Artif Organs. 2014;38(7):587–593.
  • Gaddum NR, Stevens M, Lim E, et al. Starling-like flow control of a left ventricular assist device: in vitro validation. Artif Organs. 2014;38(3):46–56.
  • Arndt A, Nüsser P, Graichen K, et al. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient. Artif Organs. 2008;32(10):761–771.
  • Ochsner G, Amacher R, Wilhelm MJ, et al. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Artif Organs. 2014;38(7):527–538.
  • Petrou A, Ochsner G, Amacher R, et al. A physiological controller for turbodynamic ventricular assist devices based on left ventricular systolic pressure. Artif Organs. 2016;40(9):842–855.
  • Stevens MC, Wilson S, Bradley A, et al. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach. Artif Organs. 2014;38(9):766–774.
  • Ng BC, Smith PA, Nestler F, et al. Application of adaptive starling-like controller to total artificial heart using dual rotary blood pumps. Ann Biomed Eng. 2017;45(3):567–579.
  • Koh VCA, Ho YK, Stevens MC, et al. A centralized multi-objective model predictive control for a biventricular assist device: an in silico evaluation. Biomed Signal Process Control. 2019;49:137–148.
  • Guyton AC, Jones CE, Coleman TG. Cardiac output and its regulation (circulatory physiology). 2nd ed ed. London: W.B. Saunders; 1973.
  • Stephens A, Gregory S, Tansley G, et al. In vitro evaluation of an adaptive Starling‐like controller for dual rotary ventricular assist devices. Artif Organs. 2019;43(11):aor.13510.
  • Gregory SD, Pauls JP, Wu EL, et al. An advanced mock circulation loop for in‐vitro cardiovascular device evaluation. Artif Organs. 2020;aor.13636. DOI:https://doi.org/10.1111/aor.13636..
  • Ng BC, Salamonsen RF, Gregory SD, et al. Application of multiobjective neural predictive control to biventricular assistance using dual rotary blood pumps. Biomed Signal Process Control. 2018;39(1):81–93
  • Stephens AF, Stevens MC, Gregory SD, et al. In vitro evaluation of an immediate response starling-like controller for dual rotary blood pumps. Artif Organs. 2017;41(10):911–922.
  • Stephens AF, Gregory SD, Salamonsen RF. The importance of venous return in starling‐like control of rotary ventricular assist devices. Artif Organs. 2019;43(3):E16–E27.
  • Pauls JP, Stevens MC, Schummy E, et al. In vitro comparison of active and passive physiological control systems for biventricular assist devices. Ann Biomed Eng. 2016;44(5):1370–1380.
  • Gregory SD, Pauls JP, Wu EL, et al. An advanced mock circulation loop for in-vitro cardiovascular device evaluation. Artif Organs. 2020;44(6). Published. DOI:https://doi.org/10.1111/aor.13636.
  • Pauls JP, Roberts LA, Stephens A, et al. Improving in vitro evaluation capabilities of cardiac assist devices through a validated exercise simulation. 2019 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Berlin, Germany: IEEE; 2019. p. 4901–4904.
  • Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol. 1985;55(10):D42–D47.
  • Thadani U, Parker JO. Hemodynamics at rest and during supine and sitting bicycle exercise in normal subjects. Am J Cardiol. 1978;41(1):52–59.
  • Pauls JP, Stevens MC, Bartnikowski N, et al. Evaluation of physiological control systems for rotary left ventricular assist devices: an in-vitro study. Ann Biomed Eng. 2016;44(8):2377–2387.
  • Gregory SD, Stevens MC, Pauls JP, et al. In vivo evaluation of active and passive physiological control systems for rotary left and right ventricular assist devices. Artif Organs. 2016;40(4):894–903.
  • Ochsner G, Wilhelm MJ, Amacher R, et al. In vivo evaluation of physiologic control algorithms for left ventricular assist devices based on left ventricular volume or pressure. Asaio J. 2017;63(5):568–577.
  • Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–S39.
  • Sayer G, Jeevanandam V, Ota T, et al. Invasive hemodynamic echocardiographic ramp test in the heartassist5 LVAD: insights into device performance. Asaio J. 2017;63(2):10–12.
  • Banerjee D, Dutt D, Duclos S, et al. Simultaneous ramp right heart catheterization and echocardiography in a reliantheart left ventricular assist device. World J Cardiol. 2017;9(1):55–59.
  • Adamson PB, Abraham WT, Bourge RC, et al. CardioMEMS heart sensor allows monitoring of pressures to improve outcomes in NYHA Class III heart failure patients (CHAMPION) trial: impact of hemodynamic guided care on patients with preserved ejection fraction. J Card Fail. 2010;16(11):913.
  • Bullister E, Reich S, D’Entremont P, et al. A blood pressure sensor for long-term implantation. Artif Organs. 2001;25(5):376–379.
  • Fritz B, Cysyk J, Newswanger R, et al. Development of an inlet pressure sensor for control in a left ventricular assist device. Asaio J. 2010;56(3):180–185.
  • Staufert S, Hierold C. Novel sensor integration approach for blood pressure sensing in ventricular assist devices. 30th Eurosensors Conf. The Author(s). 2016;71–75. DOI:https://doi.org/10.1016/j.proeng.2016.11.150..
  • Brancato L, Keulemans G, Verbelen T, et al. An implantable intravascular pressure sensor for a ventricular assist device. Micromachines. 2016;7(8):1–17.
  • Da ZM, Yang C, Liu Z, et al. An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure. Biomed Microdevices. 2012;14(1):235–245.
  • Stephens AF, Busch A, Gregory SD, et al. Temperature compensated fibre bragg grating pressure sensor for ventricular assist devices*. 2018 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Honolulu, HI, USA: IEEE; 2018. p. 1–4. DOI:https://doi.org/10.1109/EMBC.2018.8512952.
  • Stephens AF, Busch A, Salamonsen RF, et al. A novel fibre Bragg grating pressure sensor for rotary ventricular assist devices. Sensors Actuators A Phys. 2019;295:474–482.
  • Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–1504.
  • Palma A. Meet andrew jones, The bodybuilder without a pulse. Futurism. 2016 Aug. Available from: https://futurism.com/meet-andrew-jones-the-bodybuilder-without-a-pulse
  • Gross C, Schima H, Schlöglhofer T, et al. Continuous LVAD monitoring reveals high suction rates in clinically stable outpatients. Artif Organs. 2020 August;1–12. DOI:https://doi.org/10.1111/aor.13638.
  • Gross C, Marko C, Mikl J, et al. LVAD pump flow does not adequately increase with exercise. Artif Organs. 2019;43(3):222–228.
  • Schmidt T, Bjarnason-Wehrens B, Bartsch P, et al. Exercise capacity and functional performance in heart failure patients supported by a left ventricular assist device at discharge from inpatient rehabilitation. Artif Organs. 2018;42(1):22–30.
  • Granegger M, Moscato F, Casas F, et al. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function. Artif Organs. 2012;36(8):691–699.
  • Malagutti N, Karantonis DM, Cloherty SL, et al. Noninvasive average flow estimation for an implantable rotary blood pump: a new algorithm incorporating the role of blood viscosity. Artif Organs. 2007;31(1):45–52.
  • Naiyanetr P, Moscato F, Vollkron M, et al. Continuous assessment of cardiac function during rotary blood pump support: a contractility index derived from pump flow. J Heart Lung Transplant. 2010;29(1):37–44.
  • Pennings KAMA, Martina JR, Rodermans BFM, et al. Pump flow estimation from pressure head and power uptake for the heartassist5, heartmate II, and heartware VADs. Asaio J. 2013;59(4):420–426.
  • Al Omari A, Savkin AV, Ayre PJ, et al. Non-invasive estimation and control of inlet pressure in an implantable rotary blood pump for heart failure patients. Physiol Meas. 2009;32(8):1035–1060.
  • Granegger M, Masetti M, Laohasurayodhin R, et al. Continuous monitoring of aortic valve opening in rotary blood pump patients. IEEE Trans Biomed Eng. 2016;63(6):1201–1207.
  • Bergenstal RM, Tamborlane WV, Ahmann A, et al. Sensor-augmented pump therapy for A1C reduction (STAR 3) study: results from the 6-month continuation phase. Diabetes Care. 2011;34(11):2403–2405.
  • Gregory SD, Timms D, Gaddum NR, et al. In vitro evaluation of a compliant inflow cannula reservoir to reduce suction events with extracorporeal rotary ventricular assist device support. Artif Organs. 2011;35(8):765–772.
  • Pauls JP, Nandakumar D, Horobin J, et al. The effect of compliant inflow cannulae on the hemocompatibility of rotary blood pump circuits in an in vitro model. Artif Organs. 2017;41(10):E118–E128.
  • Tchantchaleishvili V, Luc JGY, Cohan CM, et al. Clinical implications of physiologic flow adjustment in continuous-flow left ventricular assist devices. Asaio J. 2017;63(3):241–250.
  • Petrou A, Lee J, Dual S, et al. Standardized comparison of selected physiological controllers for rotary blood pumps: in vitro study. Artif Organs. 2018;42(3):29–42.
  • Wang Y, Koenig SC, Wu ZJ, et al. Sensorless physiologic control, suction prevention, and flow balancing algorithm for rotary biventricular assist devices. IEEE Trans Control Syst Technol. 2019;27(2):717–729.
  • Moscato F, Schima H. Mechanical circulatory support in end-stage heart failure. Mech Circ Support End-Stage Hear Fail. 2017;163–173. DOI:https://doi.org/10.1007/978-3-319-43383-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.