344
Views
4
CrossRef citations to date
0
Altmetric
Review

Advances in CSF shunt devices and their assessment for the treatment of hydrocephalus

ORCID Icon, , ORCID Icon, &
Pages 865-873 | Received 12 Nov 2020, Accepted 27 Jul 2021, Published online: 11 Aug 2021

References

  • Leinonen V, Vanninen R, Rauramaa T. Cerebrospinal fluid circulation and hydrocephalus. J Handb clin neurol. 2018;145:39–50.
  • Dewan MC, Rattani A, Mekary R, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg. 2018;1-15.
  • Lim J, Tang AR, Liles C, et al. The cost of hydrocephalus: a cost-effectiveness model for evaluating surgical techniques. J Neurosurg Pediatr. 2018;23(1):109–118.
  • Chan AK, McGovern RA, Zacharia BE, et al. Inferior short-term safety profile of endoscopic third ventriculostomy compared with ventriculoperitoneal shunt placement for idiopathic normal-pressure hydrocephalus: a population-based study. Neurosurgery. 2013;73(6):951–960; discussion 960-951.
  • Pinto FC, Saad F, Oliveira MF, et al. Role of endoscopic third ventriculostomy and ventriculoperitoneal shunt in idiopathic normal pressure hydrocephalus: preliminary results of a randomized clinical trial. Neurosurgery. 2013;72(5):845–853; discussion 853-844.
  • Tomei KL. The evolution of cerebrospinal fluid shunts: advances in technology and technique. Pediatr Neurosurg. 2017;52(6):369–380.
  • Paff M, Alexandru-Abrams D, Muhonen M, et al. Ventriculoperitoneal shunt complications: a review. Interdiscip Neurosurg. 2018;13: 66–70.
  • Rymarczuk GN, Keating RF, Coughlin DJ, et al. A comparison of ventriculoperitoneal and ventriculoatrial shunts in a population of 544 consecutive pediatric patients. Neurosurgery. 2020;87(1):80–85.
  • Hentati A, Badri M, Bahri K, et al. Acquired Chiari I malformation due to lumboperitoneal shunt: a case report and review of literature. Surg Neurol Int. 2019;10:78.
  • Riffaud L, Moughty C, Henaux PL, et al. Acquired Chiari I malformation and syringomyelia after valveless lumboperitoneal shunt in infancy. Pediatr Neurosurg. 2008;44(3):229–233.
  • Wang VY, Barbaro NM, Lawton MT, et al. Complications of lumboperitoneal shunts. Neurosurgery. 2007;60(6):1045–1048; discussion 1049.
  • Singh A, Vajpeyi IN. Comparative study of lumboperitoneal shunt versus ventriculoperitoneal shunt in post meningitis communicating hydrocephalus in children. Neurol India. 2013;61(5):513–516.
  • Azad TD, Zhang Y, Varshneya K, et al. Lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension demonstrate comparable failure and complication rates. Neurosurgery. 2020;86(2):272–280.
  • Miyake H. Shunt devices for the treatment of adult hydrocephalus: recent progress and characteristics. Neurol Med Chir (Tokyo). 2016;56(5):274–283.
  • Aschoff A. In-depth view: functional characteristics of CSF shunt devices (Pros and Cons). In: Di Rocco C, Pang D, Rutka JT, editors. Textbook of pediatric neurosurgery. 2020. p. 575–604.
  • Aschoff A, Kremer P, Hashemi B, et al. The scientific history of hydrocephalus and its treatment. Neurosurg Rev. 1999;22(2–3):67–93; discussion 94-65.
  • Giordan E, Palandri G, Lanzino G, et al. Outcomes and complications of different surgical treatments for idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurosurg. 2018;1-13.
  • Czosnyka M, Czosnyka Z, Whitehouse H, et al. Hydrodynamic properties of hydrocephalus shunts: United Kingdom shunt evaluation laboratory. J Neurol Neurosurg Psychiatry. 1997;62(1):43–50.
  • Hamilton M, Gruen JP, Luciano MG. Introduction: adult hydrocephalus. Neurosurg Focus. 2016;41(3):E1.
  • Hanak BW, Bonow RH, Harris CA, et al. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg. 2017;52(6):381–400.
  • DeCuypere M, Teo C. Complications of endoscopic third ventriculostomy. In: Cinalli G, Özek MM, Sainte-Rose C, editors. Pediatric hydrocephalus. Cham: Springer International Publishing; 2019. p. 1563–1577.
  • Frassanito SP P, Di Rocco C. Late complications following surgical treatment of hydrocephalus. In: Textbook of pediatric neurosurgery. 2018.
  • Lo P, Drake JM. Shunt malfunctions. Neurosurg Clin N Am. 2001;12(4):695–701, viii.
  • Drake JM, Kestle JR, Tuli S. CSF shunts 50 years on–past, present and future. Childs Nerv Syst. 2000;16(10–11):800–804.
  • Di Rocco C, Marchese E, Velardi F. A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus. Cooperative survey of the 1991-1992 education committee of the ISPN. Childs Nerv Syst. 1994;10(5):321–327.
  • Janson CG, Romanova LG, Rudser KD, et al. Improvement in clinical outcomes following optimal targeting of brain ventricular catheters with intraoperative imaging. J Neurosurg. 2014;120(3):684–696.
  • Thomale UW, Schaumann A, Stockhammer F, et al. GAVCA study: randomized, multicenter trial to evaluate the quality of ventricular catheter placement with a mobile health assisted guidance technique. Neurosurgery. 2018;83(2):252–262.
  • Ananthanandorn A. Outcome of proximal ventricular catheter placement in ventriculoperitoneal shunt operations using the parietal approach. J Med Assoc Thai. 2017;100(Suppl 1):S27–32.
  • Albright AL, Haines SJ, Taylor FH. Function of parietal and frontal shunts in childhood hydrocephalus. J Neurosurg. 1988;69(6):883–886.
  • Mollahoseini R, Khajoo A, Habibollahi P. Evaluation of ventriculoperitoneal shunt malfunction regarding ventricular catheter placement. Med J Islam Repub Iran. 2010;24(2):79–82.
  • Dickerman RD, McConathy WJ, Morgan J, et al. Failure rate of frontal versus parietal approaches for proximal catheter placement in ventriculoperitoneal shunts: revisited. J Clin Neurosci. 2005;12(7):781–783.
  • Wilson TJ, McCoy KE, Al-Holou WN, et al. Comparison of the accuracy and proximal shunt failure rate of freehand placement versus intraoperative guidance in parietooccipital ventricular catheter placement. Neurosurg Focus. 2016;41(3):E10.
  • Wilson TJ, Stetler WR Jr, Al-Holou WN, et al. Comparison of the accuracy of ventricular catheter placement using freehand placement, ultrasonic guidance, and stereotactic neuronavigation. J Neurosurg. 2013;119(1):66–70.
  • Hayhurst C, Beems T, Jenkinson MD, et al. Effect of electromagnetic-navigated shunt placement on failure rates: a prospective multicenter study. J Neurosurg. 2010;113(6):1273–1278.
  • Heussinger N, Eyupoglu IY, Ganslandt O, et al. Ultrasound-guided neuronavigation improves safety of ventricular catheter insertion in preterm infants. Brain Dev. 2013;35(10):905–911.
  • Lind CR, Correia JA, Law AJ, et al. A survey of surgical techniques for catheterising the cerebral lateral ventricles. J Clin Neurosci. 2008;15(8):886–890.
  • Reig AS, Stevenson CB, Tulipan NB. CT-based, fiducial-free frameless stereotaxy for difficult ventriculoperitoneal shunt insertion: experience in 26 consecutive patients. Stereotact Funct Neurosurg. 2010;88(2):75–80.
  • Thomale UW, Knitter T, Schaumann A, et al. Smartphone-assisted guide for the placement of ventricular catheters. Childs Nerv Syst. 2013;29(1):131–139.
  • Flannery AM, Duhaime AC, Tamber MS, et al. Pediatric hydrocephalus systematic R, evidence-based guidelines task F. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 3: endoscopic computer-assisted electromagnetic navigation and ultrasonography as technical adjuvants for shunt placement. J Neurosurg Pediatr. 2014;14(Suppl 1):24–29.
  • Nesvick CL, Khan NR, Mehta GU, et al. Image guidance in ventricular cerebrospinal fluid shunt catheter placement: a systematic review and meta-analysis. Neurosurgery. 2015;77(3):321–331; discussion 331.
  • Weisenberg SH, TerMaath SC, Seaver CE, et al. Ventricular catheter development: past, present, and future. J Neurosurg. 2016;125(6):1504–1512.
  • Torkildsen A. A new palliative operation in cases of inoperable occlusion of the Sylvian aqueduct. Acta Psychiatr Scand. 1939;14(1–2):221.
  • Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vain. Surg Forum. 1951;399–403.
  • Pudenz RH. Experimental and clinical observations on the shunting of cerebrospinal fluid into the circulatory system. Clin Neurosurg. 1957;5:98–114; discussion 114-115.
  • Hakim S. Observations on the physiopathology of the CSF pulse and prevention of ventricular catheter obstruction in valve shunts. Dev Med Child Neurol Suppl. 1969;20:42–48.
  • Wong -T-T, Lee L-S, Liu R-S, et al. Hydrocephalus. In: Hydrogel ventriculo-subdural shunt for the treatment of hydrocephalus in children. Springer, 1991. 438–449.
  • Gower DJ, Watson D, Harper D. e-PTFE ventricular shunt catheters. Neurosurgery. 1992;31(6):1132–1135;1134.
  • Hanak BW, Hsieh CY, Donaldson W, et al. Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J Biomed Mater Res B Appl Biomater. 2018;106(3):1268–1279.
  • Chen HH, Riva-Cambrin J, Brockmeyer DL, et al. Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr. 2011;7(4):408–412.
  • Drake JM, Kestle JR, Milner R, et al. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery. 1998;43(2):294–303; discussion 303-295.
  • Bayston R, Bhundia C, Ashraf W. Hydromer-coated catheters to prevent shunt infection? J Neurosurg. 2005;102(2 Suppl):207–212.
  • Cagavi F, Akalan N, Celik H, et al. Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochir (Wien). 2004;146(6):603–610; discussion 609-610.
  • Mayol M, Estronza S, Sosa IJ, et al. Efficacy of hydromer-coated and antibiotic- impregnated shunt systems in reducing early shunt infections in the pediatric population. P R Health Sci J. 2019;38(4):244–247.
  • Konstantelias AA, Vardakas KZ, Polyzos KA, et al. Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. J Neurosurg. 2015;122(5):1096–1112.
  • Kaufmann AM, Lye T, Redekop G, et al. Infection rates in standard vs. hydrogel coated ventricular catheters. Can J Neurol Sci. 2004;31(4):506–510.
  • Boelens JJ, Tan WF, Dankert J, et al. Antibacterial activity of antibiotic-soaked polyvinylpyrrolidone-grafted silicon elastomer hydrocephalus shunts. J Antimicrob Chemother. 2000;45(2):221–224.
  • Hazer DB, Mut M, Dincer N, et al. The efficacy of silver-embedded polypropylene-grafted polyethylene glycol-coated ventricular catheters on prevention of shunt catheter infection in rats. Childs Nerv Syst. 2012;28(6):839–846.
  • Izci Y, Secer H, Akay C, et al. Initial experience with silver-impregnated polyurethane ventricular catheter for shunting of cerebrospinal fluid in patients with infected hydrocephalus. Neurol Res. 2009;31(3):234–237.
  • Mallucci CL, Jenkinson MD, Conroy EJ, et al. Antibiotic or silver versus standard ventriculoperitoneal shunts (BASICS): a multicentre, single-blinded, randomised trial and economic evaluation. Lancet. 2019;394(10208):1530–1539.
  • Edwards NC, Engelhart L, Casamento EM, et al. Cost-consequence analysis of antibiotic-impregnated shunts and external ventricular drains in hydrocephalus. J Neurosurg. 2015;122(1):139–147.
  • Thomas R, Lee S, Patole S, et al. Antibiotic-impregnated catheters for the prevention of CSF shunt infections: a systematic review and meta-analysis. Br J Neurosurg. 2012;26(2):175–184.
  • Gutierrez-Gonzalez R, Boto GR. Do antibiotic-impregnated catheters prevent infection in CSF diversion procedures? Review of the literature. J Infect. 2010;61(1):9–20.
  • Eymann R, Chehab S, Strowitzki M, et al. Clinical and economic consequences of antibiotic-impregnated cerebrospinal fluid shunt catheters. J Neurosurg Pediatr. 2008;1(6):444–450.
  • Gutierrez-Gonzalez R, Boto GR, Perez-Zamarron A. Cerebrospinal fluid diversion devices and infection. A comprehensive review. Eur J Clin Microbiol Infect Dis. 2012;31(6):889–897.
  • Bayston R, Grove N, Siegel J, et al. Prevention of hydrocephalus shunt catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry. 1989;52(5):605–609.
  • Bayston R, Milner RD. Antimicrobial activity of silicone rubber used in hydrocephalus shunts, after impregnation with antimicrobial substances. J Clin Pathol. 1981;34(9):1057–1062.
  • Bayston R, Lambert E. Duration of protective activity of cerebrospinal fluid shunt catheters impregnated with antimicrobial agents to prevent bacterial catheter-related infection. J Neurosurg. 1997;87(2):247–251.
  • Bayston R, Ashraf W, Pelegrin I, et al. An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study. J Antimicrob Chemother. 2019;74(10):2959–2964.
  • Portnoy HD. New ventricular catheter for hydrocephalic shunts. Technical note. J Neurosurg. 1971;34(5):702–703.
  • Haase J, Weeth R. Multiflanged ventricular Portnoy catheter for hydrocephalus shunts. Acta Neurochir (Wien). 1976;33(3–4):213–218.
  • Hoffman HJ, Smith MS. The use of shunting devices for cerebrospinal fluid in Canada. Can J Neurol Sci. 1986;13(2):81–87.
  • Nakamura S, Moriyasu N. Floating ventricular catheter: a new shunting device. Front Neurol Neurosci. 1982;191–194.
  • Lin J, Morris M, Olivero W, et al. Computational and experimental study of proximal flow in ventricular catheters. Technical note. J Neurosurg. 2003;99(2):426–431.
  • Galarza M, Gimenez A, Amigo JM, et al. Next generation of ventricular catheters for hydrocephalus based on parametric designs. Childs Nerv Syst. 2018;34(2):267–276.
  • Cheatle JT, Bowder AN, Agrawal SK, et al. Flow characteristics of cerebrospinal fluid shunt tubing. J Neurosurg Pediatr. 2012;9(2):191–197.
  • Galarza M, Gimenez A, Pellicer O, et al. New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics. Childs Nerv Syst. 2015;31(1):37–48.
  • Galarza M, Gimenez A, Pellicer O, et al. Parametric study of ventricular catheters for hydrocephalus. Acta Neurochir (Wien). 2016;158(1):109–115; discussion 115-106.
  • Galarza M, Gimenez A, Valero J, et al. Basic cerebrospinal fluid flow patterns in ventricular catheters prototypes. Childs Nerv Syst. 2015;31(6):873–884.
  • Gimenez A, Galarza M, Pellicer O, et al. Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus. Biomed Eng Online. 2016;15(Suppl 1):71.
  • Thomale UW, Hosch H, Koch A, et al. Perforation holes in ventricular catheters–is less more? Childs Nerv Syst. 2010;26(6):781–789.
  • Galarza M, Etus V, Sosa F, et al. Flow ventricular catheters for shunted hydrocephalus: initial clinical results. Childs Nerv Syst. 2021;37(3):903–911.
  • Ferras M, McCauley N, Stead T, et al. Ventriculoperitoneal shunts in the emergency department: a review. Cureus. 2020;12(2):e6857.
  • Xu J, Poole C, Sahyouni R, et al. Noninvasive thermal evaluation for shunt failure in the emergency room. Surg Neurol Int. 2019;10:254.
  • Fallis R. NeuroDx Development-Overview of ShuntCheck. J Chem Inf Model. 2019;53(9):1689–1699.
  • Madsen JR, Boyle TP, Neuman MI, et al. Diagnostic accuracy of non-invasive thermal evaluation of ventriculoperitoneal shunt flow in shunt malfunction: a prospective, multi-site, operator-blinded study. Neurosurgery. 2020;87(5):939–948.
  • Ozdol C, Kulaksizoglu S, Uyar R, et al. Initial results of using blood beta 2 transferrin as a marker of the functional status of a shunt. World Neurosurg. 2019;128:e501–e503.
  • Jorgensen J, Williams C, Sarang-Sieminski A. Hydrocephalus and ventriculoperitoneal shunts: modes of failure and opportunities for improvement. Crit Rev Biomed Eng. 2016;44(1–2):91–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.