213
Views
0
CrossRef citations to date
0
Altmetric
Review

Review on the current treatment status of vein of Galen malformations and future directions in research and treatment

, , , &
Pages 933-954 | Received 12 May 2021, Accepted 17 Aug 2021, Published online: 30 Aug 2021

References

  • Casasco A, Lylyk P, Hodes JE, et al. Percutaneous transvenous catheterization and embolization of vein of galen aneurysms. Neurosurgery. 1991;28(2):260–266.
  • Lasjaunias P, Terbrugge K, Piske R, et al. [Dilatation of the vein of Galen. Anatomoclinical forms and endovascular treatment apropos of 14 cases explored and/or treated between 1983 and 1986]. Neurochirurgie. 1987;33(4):315–333.
  • Berenstein A, Paramasivam S, Sorscher M, et al. Vein of Galen aneurysmal malformation: advances in management and endovascular treatment. Neurosurgery. 2019;84(2):469–478.
  • Bhatia K, Mendes Pereira V, Krings T, et al. Factors contributing to major neurological complications from vein of Galen malformation embolization. JAMA Neurol. 2020;77(8):992–999.
  • Brinjikji W, Krings T, Murad MH, et al. Endovascular treatment of vein of galen malformations: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2017;38(12):2308–2314.
  • Sivasankar R, Limaye US, Wuppalapati S, et al. Endovascular management of vein of galen aneurysmal malformations: a retrospective analysis over a 15-year period. J Vasc Interv Neurol. 2019;10(3):23–29.
  • Lasjaunias P, Manelfe C, Terbrugge K, et al. Endovascular treatment of cerebral arteriovenous malformations. Neurosurg Rev. 1986;9(4):265–275.
  • Lasjaunias P, Rodesch G, Pruvost P, et al. Treatment of vein of Galen aneurysmal malformation. J Neurosurg. 1989;70(5):746–750.
  • Lasjaunias P, Rodesch G, Terbrugge K, et al. Vein of Galen aneurysmal malformations. Report of 36 cases managed between 1982 and 1988. Acta Neurochir (Wien). 1989;99(1–2):26–37.
  • Lasjaunias P, Garcia-Monaco R, Rodesch G, et al. Vein of Galen malformation. Endovascular management of 43 cases. Childs Nerv Syst. 1991;7(7):360–367.
  • Recinos PF, Rahmathulla G, Pearl M, et al. Vein of Galen malformations: epidemiology, clinical presentations, management. Neurosurg Clin N Am. 2012;23(1):165–177.
  • Stephan S, Rodesch G, Elolf E, et al. Vein of galen aneurysmal malformations: an ultrasonographic incidental finding-a case report. Case Rep Pediatr. 2012;2012:824284.
  • Lasjaunias P, Hui F, Zerah M, et al. Cerebral arteriovenous malformations in children. Management of 179 consecutive cases and review of the literature. Childs Nerv Syst. 1995;11(2):66–79. discussion.
  • Frawley GP, Dargaville PA, Mitchell PJ, et al. Clinical course and medical management of neonates with severe cardiac failure related to vein of Galen malformation. Arch Dis Child Fetal Neonatal Ed. 2002;87(2):F144–9.
  • Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am. 2010;21(3):399–426.
  • Pearl M, Gomez J, Gregg L, et al. Endovascular management of vein of Galen aneurysmal malformations. Influence of the normal venous drainage on the choice of a treatment strategy. Childs Nerv Syst. 2010;26(10):1367–1379.
  • Raybaud CA, Strother CM, Hald JK. Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation. Neuroradiology. 1989;31(2):109–128.
  • Wolfram-Gabel R, Maillot C, Koritké JG. The vascular pattern in the tela choroidea of the prosencephalon in man. J Neuroradiol. 1987;14(1):10–26.
  • El Mekabaty A, Pearl MS, Mershon B, et al. Susceptibility weighted imaging in infants with staged embolization of vein of Galen aneurysmal malformations. J Neuroradiol. 2019;46(3):214–221.
  • Vivanti A, Ozanne A, Grondin C, et al. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain. 2018;141(4):979–988.
  • Dandy WE. EXPERIMENTAL HYDROCEPHALUS. Ann Surg. 1919;70(2):129–142.
  • Lasjaunias PL, Chng SM, Sachet M, et al. The management of vein of Galen aneurysmal malformations. Neurosurgery. 2006;59(5 Suppl 3):S184–94. discussion S3–13.
  • Litvak J, Yahr MD, Ransohoff J. Aneurysms of the great vein of Galen and midline cerebral arteriovenous anomalies. J Neurosurg. 1960;17(6):945–954.
  • Yasargil MG, Antic J, Laciga R, et al. Arteriovenous malformations of vein of Galen: microsurgical treatment. Surg Neurol. 1976;3:195–200.
  • Lasjaunias P. Vein of Galen malformations. Neurosurgery. 1989;25(4):666–667.
  • Lasjaunias P, Ter Brugge K, Lopez Ibor L, et al. The role of dural anomalies in vein of Galen aneurysms: report of six cases and review of the literature. AJNR Am J Neuroradiol. 1987;8(2):185–192.
  • Rodesch G, Lasjaunias P, Terbrugge K, et al. [Intracranial arteriovenous vascular lesions in children. Role of endovascular technics apropos of 44 cases]. Neurochirurgie. 1988;34(5):293–303.
  • Berenstein A, Fifi JT, Niimi Y, et al. Vein of Galen malformations in neonates: new management paradigms for improving outcomes. Neurosurgery. 2012;70(5):1207–1213. discussion 13–4.
  • Gold A, Ransohoff J, Carter S. VEIN OF GALEN MALFORMATION. Acta Neurol Scand Suppl. 1964;40(Suppl 11):1–31.
  • Yan J, Gopaul R, Wen J, et al. The natural progression of VGAMs and the need for urgent medical attention: a systematic review and meta-analysis. J Neurointerv Surg. 2017;9(6):564–570.
  • Khullar D, Andeejani AM, Bulsara KR. Evolution of treatment options for vein of Galen malformations. J Neurosurg Pediatr. 2010;6(5):444–451.
  • Yan J, Wen J, Gopaul R, et al. Outcome and complications of endovascular embolization for vein of Galen malformations: a systematic review and meta-analysis. J Neurosurg. 2015;123(4):872–890.
  • Rodesch G, Hui F, Alvarez H, et al. Prognosis of antenatally diagnosed vein of Galen aneurysmal malformations. Childs Nerv Syst. 1994;10(2):79–83.
  • Nuutila M, Saisto T. Prenatal diagnosis of vein of Galen malformation: a multidisciplinary challenge. Am J Perinatol. 2008;25(4):225–227.
  • Paternoster DM, Manganelli F, Moroder W, et al. Prenatal diagnosis of vein of Galen aneurysmal malformations. Fetal Diagn Ther. 2003;18(6):408–411.
  • Wong FY, Mitchell PJ, Tress BM, et al. Hemodynamic disturbances associated with endovascular embolization in newborn infants with vein of Galen malformation. J Perinatol. 2006;26(5):273–278.
  • Alvarez H, Garcia Monaco R, Rodesch G, et al. Vein of galen aneurysmal malformations. Neuroimaging Clin N Am. 2007;17(2):189–206.
  • Garcia-Monaco R, De Victor D, Mann C, et al. Congestive cardiac manifestations from cerebrocranial arteriovenous shunts. Endovascular management in 30 children. Childs Nerv Syst. 1991;7(1):48–52.
  • Hoang S, Choudhri O, Edwards M, et al. Vein of Galen malformation. Neurosurg Focus. 2009;27(5):E8.
  • Krings T, Geibprasert S, Terbrugge K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg Clin N Am. 2010;21(3):463–482.
  • Meila D, Grieb D, Melber K, et al. Hydrocephalus in vein of Galen malformation: etiologies and therapeutic management implications. Acta Neurochir (Wien). 2016;158(7):1279–1284.
  • Zerah M, Garcia-Monaco R, Rodesch G, et al. Hydrodynamics in vein of Galen malformations. Childs Nerv Syst. 1992;8(3):111–117. discussion 7.
  • Quisling RG, Mickle JP. Venous pressure measurements in vein of Galen aneurysms. AJNR Am J Neuroradiol. 1989;10(2):411–417.
  • Mickle JP, Quisling RG. The transtorcular embolization of vein of Galen aneurysms. J Neurosurg. 1986;64(5):731–735.
  • Schneider SJ, Wisoff JS, Epstein FJ. Complications of ventriculoperitoneal shunt procedures or hydrocephalus associated with vein of Galen malformations in childhood. Neurosurgery. 1992;30(5):706–708.
  • Okudera T, Huang YP, Ohta T, et al. Development of posterior fossa dural sinuses, emissary veins, and jugular bulb: morphological and radiologic study. AJNR Am J Neuroradiol. 1994;15(10):1871–1883.
  • Friedmann DR, Eubig J, McGill M, et al. Development of the jugular bulb: a radiologic study. Otol Neurotol. 2011;32(8):1389–1395.
  • Geibprasert S, Krings T, Armstrong D, et al. Predicting factors for the follow-up outcome and management decisions in vein of Galen aneurysmal malformations. Childs Nerv Syst. 2010;26(1):35–46.
  • Mendelsohn DB, Hertzanu Y, Butterworth A. In utero diagnosis of a vein of Galen aneurysm by ultrasound. Neuroradiology. 1984;26(5):417–418.
  • Paladini D, Deloison B, Rossi A, et al. Vein of Galen aneurysmal malformation (VGAM) in the fetus: retrospective analysis of perinatal prognostic indicators in a two-center series of 49 cases. Ultrasound Obstet Gynecol. 2017;50(2):192–199.
  • Karam O, Da Cruz E, Rimensberger PC. VGAM induced high-flow congestive heart failure responsive to PGE1 infusion. Int J Cardiol. 2009;132(2):e60–2.
  • Kortman H, Navaei E, Raybaud CA, et al. Deep venous communication in vein of Galen malformations: incidence, imaging, and implications for treatment. J Neurointerv Surg. 2021;13(3):290–293.
  • Lasjaunias P, Garcia-Monaco R, Rodesch G, et al. Deep venous drainage in great cerebral vein (vein of Galen) absence and malformations. Neuroradiology. 1991;33(3):234–238.
  • Winkler O, Brinjikji W, Lanfermann H, et al. Anatomy of the deep venous system in vein of Galen malformation and its changes after endovascular treatment depicted by magnetic resonance venography. J Neurointerv Surg. 2019;11(1):84–89.
  • Gailloud P, D P O, Burger I, et al. Confirmation of communication between deep venous drainage and the vein of galen after treatment of a vein of Galen aneurysmal malformation in an infant presenting with severe pulmonary hypertension. AJNR Am J Neuroradiol. 2006;27(2):317–320.
  • Iizuka Y, Kakihara T, Suzuki M, et al. Endovascular remodeling technique for vein of Galen aneurysmal malformations–angiographic confirmation of a connection between the median prosencephalic vein and the deep venous system. J Neurosurg Pediatr. 2008;1(1):75–78.
  • Levrier O, Gailloud PH, Souei M, et al. Normal galenic drainage of the deep cerebral venous system in two cases of vein of Galen aneurysmal malformation. Childs Nerv Syst. 2004;20(2):91–97. discussion 8–9.
  • Abend NS, Ichord R, Aijun Z, et al. Vein of galen aneurysmal malformation with deep venous communication and subarachnoid hemorrhage. J Child Neurol. 2008;23(4):441–446.
  • Jagadeesan BD, Cross DT 3rd, Delgado Almandoz JE, et al. Susceptibility-weighted imaging: a new tool in the diagnosis and evaluation of abnormalities of the vein of Galen in children. AJNR Am J Neuroradiol. 2012;33(9):1747–1751.
  • Haacke EM, Mittal S, Wu Z, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19–30.
  • Barnes SR, Haacke EM. Susceptibility-weighted imaging: clinical angiographic applications. Magn Reson Imaging Clin N Am. 2009;17(1):47–61.
  • Jagadeesan BD, Delgado Almandoz JE, Moran CJ, et al. Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke. 2011;42(1):87–92.
  • Di Rocco C. Vein of Galen aneurysm and hydrocephalus. Childs Nerv Syst. 1991;7(7):359.
  • Taffin H, Maurey H, Ozanne A, et al. Long-term outcome of vein of Galen malformation. Dev Med Child Neurol. 2020;62(6):729–734.
  • Aoyama Y, Kinoshita Y, Yokota A, et al. Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method. J Neurosurg. 2006;104(5 Suppl):332–339.
  • Del Bigio MR, Da Silva MC, Drake JM, et al. Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci. 1994;21(4):299–305.
  • Johnston IH, Whittle IR, Besser M, et al. Vein of Galen malformation: diagnosis and management. Neurosurgery. 1987;20(5):747–758.
  • Hoffman HJ, Chuang S, Hendrick EB, et al. Aneurysms of the vein of Galen. Experience at the hospital for sick children, toronto. J Neurosurg. 1982;57(3):316–322.
  • Berenstein A, Krischeff II. Catheter and material selection for transarterial embolization: technical considerations. I Catheters Radiol. 1979;132(3):619–630.
  • Berenstein A, Kricheff II. Microembolization techniques of vascular occlusion: radiologic, pathologic, and clinical correlation. AJNR Am J Neuroradiol. 1981;2(3):261–267.
  • Berenstein A, Kricheff II. Catheter and material selection for transarterial embolization: technical considerations. II Materials Radiol. 1979;132(3):631–639.
  • Rao VR, Ravimandalam K, Gupta AK, et al. Angiographic analysis and results of endovascular therapy of aneurysm of vein of Galen. J Neuroradiol. 1994;21(3):213–222.
  • Gupta AK, Rao VR, Varma DR, et al. Evaluation, management, and long-term follow up of vein of Galen malformations. J Neurosurg. 2006;105(1):26–33.
  • Berenstein A, Masters LT, Nelson PK, et al. Transumbilical catheterization of cerebral arteries. Neurosurgery. 1997;41(4):846–850.
  • Gailloud P, O’Riordan DP, Burger I, et al. Diagnosis and management of vein of galen aneurysmal malformations. J Perinatol. 2005;25(8):542–551.
  • Lecce F, Robertson F, Rennie A, et al. Cross-sectional study of a United Kingdom cohort of neonatal vein of galen malformation. Ann Neurol. 2018;84(4):547–555.
  • Thiex R, Williams A, Smith E, et al. The use of Onyx for embolization of central nervous system arteriovenous lesions in pediatric patients. AJNR Am J Neuroradiol. 2010;31(1):112–120.
  • Wagner KM, Ghali MGZ, Srinivasan VM, et al. Vein of Galen malformations: the texas children’s hospital experience in the modern endovascular era. Oper Neurosurg (Hagerstown). 2019;17(3):286–292.
  • Lylyk P, Viñuela F, Dion JE, et al. Therapeutic alternatives for vein of Galen vascular malformations. J Neurosurg. 1993;78(3):438–445.
  • Borthne A, Carteret M, Baraton J, et al. Vein of Galen vascular malformations in infants: clinical, radiological and therapeutic aspect. Eur Radiol. 1997;7(8):1252–1258.
  • Halbach VV, Dowd CF, Higashida RT, et al. Endovascular treatment of mural-type vein of Galen malformations. J Neurosurg. 1998;89(1):74–80.
  • Mitchell PJ, Rosenfeld JV, Dargaville P, et al. Endovascular management of vein of Galen aneurysmal malformations presenting in the neonatal period. AJNR Am J Neuroradiol. 2001;22(7):1403–1409.
  • Spetzler RF, Wilson CB, Weinstein P, et al. Normal perfusion pressure breakthrough theory. Clin Neurosurg. 1978;25:651–672.
  • Charafeddine L, Numaguchi Y, Sinkin RA. Disseminated coagulopathy associated with transtorcular embolization of vein of Galen aneurysm in a neonate. J Perinatol. 1999;19(1):61–63.
  • Brew S, Taylor W, Reddington A. Stenting of a venous stenosis in vein of galen aneurysmal malformation. A case report. Interv Neuroradiol. 2001;7(3):237–240.
  • Meila D, Hannak R, Feldkamp A, et al. Vein of Galen aneurysmal malformation: combined transvenous and transarterial method using a “kissing microcatheter technique.” Neuroradiology. 2012;54(1):51–59.
  • Dowd CF, Halbach VV, Barnwell SL, et al. Transfemoral venous embolization of vein of Galen malformations. AJNR Am J Neuroradiol. 1990;11(4):643–648.
  • Yoon NK, Scoville JP, Taussky P. Adenosine-induced cardiac standstill for endovascular treatment of pediatric vein of Galen malformations. J Neurosurg Pediatr. 2018;21(4):380–383.
  • Tsimpas A, Chalouhi N, Halevy JD, et al. The use of adenosine in the treatment of a high-flow vein of Galen malformation in an adult. J Clin Neurosci. 2014;21(7):1259–1261.
  • Clausen H, Theophilos T, Jackno K, et al. Paediatric arrhythmias in the emergency department. Emerg Med J. 2012;29(9):732–737.
  • Paul T, Pfammatter JP. Adenosine: an effective and safe antiarrhythmic drug in pediatrics. Pediatr Cardiol. 1997;18(2):118–126.
  • Ramgren B, Rask O, Gelberg J, et al. Endovascular treatment of vein of Galen aneurysmal malformation using rapid ventricular pacing: a case report. Interv Neuroradiol. 2017;23(1):97–101.
  • Daehnert I, Rotzsch C, Wiener M, et al. Rapid right ventricular pacing is an alternative to adenosine in catheter interventional procedures for congenital heart disease. Heart. 2004;90(9):1047–1050.
  • David F, Sánchez A, Yánez L, et al. Cardiac pacing in balloon aortic valvuloplasty. Int J Cardiol. 2007;116(3):327–330.
  • Paramasivam S, Niimi Y, Meila D, et al. Dural arteriovenous shunt development in patients with vein of galen malformation. Interv Neuroradiol. 2014;20(6):781–790.
  • Meila D, Schmidt C, Melber K, et al. Delayed and incomplete treatment may result in dural fistula development in children with Vein of Galen malformation. Interv Neuroradiol. 2018;24(1):82–87.
  • Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.
  • Arko L, Lambrych M, Montaser A, et al. Fetal and neonatal MRI predictors of aggressive early clinical course in vein of galen malformation. AJNR Am J Neuroradiol. 2020;41(6):1105–1111.
  • Saliou G, Vraka I, Teglas JP, et al. Pseudofeeders on fetal magnetic resonance imaging predict outcome in vein of Galen malformations. Ann Neurol. 2017;81(2):278–286.
  • Saliou G, Dirks P, Sacho RH, et al. Decreased superior sagittal sinus diameter and jugular bulb narrowing are associated with poor clinical outcome in vein of galen arteriovenous malformation. AJNR Am J Neuroradiol. 2016;37(7):1354–1358.
  • Jones BV, Ball WS, Tomsick TA, et al. Vein of Galen aneurysmal malformation: diagnosis and treatment of 13 children with extended clinical follow-up. AJNR Am J Neuroradiol. 2002;23(10):1717–1724.
  • Chow ML, Cooke DL, Fullerton HJ, et al. Radiological and clinical features of vein of Galen malformations. J Neurointerv Surg. 2015;7(6):443–448.
  • Li AH, Armstrong D, terBrugge KG. Endovascular treatment of vein of Galen aneurysmal malformation: management strategy and 21-year experience in Toronto. J Neurosurg Pediatr. 2011;7(1):3–10.
  • van Swieten JC, Koudstaal PJ, Visser MC, et al. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–607.
  • Payne BR, Prasad D, Steiner M, et al. Gamma surgery for vein of Galen malformations. J Neurosurg. 2000;93(2):229–236.
  • Watban JA, Rodesch G, Alvarez H, et al. Transarterial embolization of vein of Galen aneurysmal malformation after unsuccessful stereotactic radiosurgery. Report of three cases. Childs Nerv Syst. 1995;11(7):406–408.
  • Tomsick TA, Ernst RJ, Tew JM, et al. Adult choroidal vein of Galen malformation. AJNR Am J Neuroradiol. 1995;16(4 Suppl):861–865.
  • Triffo WJ, Bourland JD, Couture DE, et al. Definitive treatment of vein of Galen aneurysmal malformation with stereotactic radiosurgery. J Neurosurg. 2014;120(1):120–125.
  • Starke RM, McCarthy D, Sheinberg D, et al. Genetic drivers of vein of Galen malformations. Neurosurgery. 2019;85(2):E205–e6.
  • Duran D, Karschnia P, Gaillard JR, et al. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr. 2018;21(4):367–374.
  • Eerola I, Boon LM, Mulliken JB, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73(6):1240–1249.
  • Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet. 2009;17(7):860–871.
  • Scheffzek K, Lautwein A, Kabsch W, et al. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature. 1996;384(6609):591–596.
  • Trahey M, Wong G, Halenbeck R, et al. Molecular cloning of two types of GAP complementary DNA from human placenta. Science. 1988;242(4886):1697–1700.
  • Tsygankova OM, Kupperman E, Wen W, et al. Cyclic AMP activates ras. Oncogene. 2000;19(32):3609–3615.
  • Chida A, Shintani M, Wakamatsu H, et al. ACVRL1 gene variant in a patient with vein of Galen aneurysmal malformation. J Pediatr Genet. 2013;2(4):181–189.
  • Revencu N, Boon LM, Mendola A, et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat. 2013;34(12):1632–1641.
  • Amyere M, Revencu N, Helaers R, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation. 2017;136(11):1037–1048.
  • Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2(3):344–358.
  • Ahmadian MR, Kiel C, Stege P, et al. Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J Mol Biol. 2003;329(4):699–710.
  • Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature. 1993;366(6456):643–654.
  • Sung H, Kanchi KL, Wang X, et al. Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget. 2016;7(17):23885–23896.
  • Vigil D, Cherfils J, Rossman KL, et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10(12):842–857.
  • Revencu N, Boon LM, Mulliken JB, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29(7):959–965.
  • Abdalla SA, Pece-Barbara N, Vera S, et al. Analysis of ALK-1 and endoglin in newborns from families with hereditary hemorrhagic telangiectasia type 2. Hum Mol Genet. 2000;9(8):1227–1237.
  • Bayrak-Toydemir P, McDonald J, Markewitz B, et al. Genotype-phenotype correlation in hereditary hemorrhagic telangiectasia: mutations and manifestations. Am J Med Genet A. 2006;140(5):463–470.
  • Mahlawat P, Ilangovan U, Biswas T, et al. Structure of the Alk1 extracellular domain and characterization of its bone morphogenetic protein (BMP) binding properties. Biochemistry. 2012;51(32):6328–6341.
  • Lee NY, Blobe GC. The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem. 2007;282(29):21507–21517.
  • Xiao Z, Liu X, Henis YI, et al. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci U S A. 2000;97(14):7853–7858.
  • Rochon ER, Menon PG, Roman BL. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development. 2016;143(14):2593–2602.
  • Tsutsumi Y, Kosaki R, Itoh Y, et al. Vein of Galen aneurysmal malformation associated with an endoglin gene mutation. Pediatrics. 2011;128(5):e1307–10.
  • De Luca C, Bevilacqua E, Badr DA, et al. An ACVRL1 gene mutation presenting as vein of Galen malformation at prenatal diagnosis. Am J Med Genet A. 2020;182(5):1255–1258.
  • Xu DS, Usman AA, Hurley MC, et al. Adult presentation of a familial-associated vein of galen aneurysmal malformation: case report. Neurosurgery. 2010;67(6):E1845–51. discussion 51.
  • Heuchan AM SJ, Berg J, Suri M, et al. RASA1 mutations and vein of Galen arterial malformations. Archives of Disease in Childhood Fetal and Neonatal Edition. 2013;98:A16–7.
  • Komiyama M, Miyatake S, Terada A, et al. Vein of Galen aneurysmal malformation in monozygotic twin. World Neurosurg. 2016;91(672):e11–5.
  • Steggerda S, Lopriore E, Sueters M, et al. Twin-to-twin transfusion syndrome, vein of galen malformation, and transposition of the great arteries in a pair of monochorionic twins: coincidence or related association? Pediatr Dev Pathol. 2006;9(1):52–55.
  • Duran D, Zeng X, Jin SC, et al. Mutations in chromatin modifier and ephrin signaling genes in vein of Galen malformation. Neuron. 2019;101(3):429–443. e4.
  • Adams RH, Wilkinson GA, Weiss C, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 1999;13(3):295–306.
  • Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741–753.
  • Herbert SP, Huisken J, Kim TN, et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science. 2009;326(5950):294–298.
  • Bai J, Wang YJ, Liu L, et al. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res. 2014;42(2):405–415.
  • Gerety SS, Wang HU, Chen ZF, et al. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4(3):403–414.
  • Zeng X, Hunt A, Jin SC, et al. EphrinB2-EphB4-RASA1 signaling in human cerebrovascular development and disease. Trends Mol Med. 2019;25(4):265–286.
  • Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn. 2015;244(3):391–409.
  • Macmurdo CF, Wooderchak-Donahue W, Bayrak-Toydemir P, et al. RASA1 somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation (CM/AVM) syndrome. Am J Med Genet A. 2016;170(6):1450–1454.
  • Isogai S, Hitomi J, Yaniv K, et al. Zebrafish as a new animal model to study lymphangiogenesis. Anat Sci Int. 2009;84(3):102–111.
  • Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001;230(2):278–301.
  • McKinney MC, Weinstein BM. Chapter 4. In: Using the zebrafish to study vessel formation. Vol. 444. Methods Enzymol; 2008. p. 65–97.
  • Aurboonyawat T, Suthipongchai S, Pereira V, et al. Patterns of cranial venous system from the comparative anatomy in vertebrates. Part I, introduction and the dorsal venous system. Interv Neuroradiol. 2007;13(4):335–344.
  • Thiex R, Mulliken JB, Revencu N, et al. A novel association between RASA1 mutations and spinal arteriovenous anomalies. AJNR Am J Neuroradiol. 2010;31(4):775–779.
  • Martin-Almedina S, Martinez-Corral I, Holdhus R, et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest. 2016;126(8):3080–3088.
  • Kawasaki J, Aegerter S, Fevurly RD, et al. RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest. 2014;124(6):2774–2784.
  • Fang J, Hirschi K. Molecular regulation of arteriovenous endothelial cell specification. F1000Res. 2019;8. doi: https://doi.org/10.12688/f1000research.16701.1
  • Hirashima M, Suda T. Differentiation of arterial and venous endothelial cells and vascular morphogenesis. Endothelium. 2006;13(2):137–145.
  • Shoemaker LD, Fuentes LF, Santiago SM, et al. Human brain arteriovenous malformations express lymphatic-associated genes. Ann Clin Transl Neurol. 2014;1(12):982–995.
  • Fang JS, Coon BG, Gillis N, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8(1):2149.
  • Buschmann I, Pries A, Styp-Rekowska B, et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010;137(13):2187–2196.
  • Tuttle JL, Nachreiner RD, Bhuller AS, et al. Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression. Am J Physiol Heart Circ Physiol. 2001;281(3):H1380–9.
  • Tronc F, Wassef M, Esposito B, et al. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996;16(10):1256–1262.
  • Langille BL. Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol. 1996;74(7):834–841.
  • Rodbard S. Vascular caliber. Cardiology. 1975;60(1):4–49.
  • Park YG, Choi J, Jung HK, et al. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy. Int J Mol Med. 2017;40(4):1210–1216.
  • Baeyens N, Nicoli S, Coon BG, et al. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. Elife 2015;4:e04645.
  • Baeyens N, Bandyopadhyay C, Coon BG, et al. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest. 2016;126(3):821–828.
  • Suo J, Ferrara DE, Sorescu D, et al. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler Thromb Vasc Biol. 2007;27(2):346–351.
  • Dixon JB, Greiner ST, Gashev AA, et al. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation. 2006;13(7):597–610.
  • Silvestre JS, Mallat Z, Tedgui A, et al. Post-ischaemic neovascularization and inflammation. Cardiovasc Res. 2008;78(2):242–249.
  • Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev. 2013;93(4):1743–1802.
  • Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascular Surg. 2003;37(1):47–57.
  • Akimoto S, Mitsumata M, Sasaguri T, et al. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ Res. 2000;86(2):185–190.
  • Van Gieson EJ, Murfee WL, Skalak TC, et al. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo. Circ Res. 2003;92(8):929–936.
  • Baeyens N, Larrivée B, Ola R, et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol. 2016;214(7):807–816.
  • Dupuis-Girod S, Bailly S, Plauchu H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost. 2010;8(7):1447–1456.
  • McDonald J, Wooderchak-Donahue W, VanSant Webb C, et al. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1.
  • Crist AM, Lee AR, Patel NR, et al. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of hereditary hemorrhagic telangiectasia. Angiogenesis. 2018;21(2):363–380.
  • Mahmoud M, Allinson KR, Zhai Z, et al. Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res. 2010;106(8):1425–1433.
  • Tual-Chalot S, Mahmoud M, Allinson KR, et al. Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. PLoS One. 2014;9(6):e98646.
  • Jin Y, Muhl L, Burmakin M, et al. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat Cell Biol. 2017;19(6):639–652.
  • Sugden WW, Meer R, Aegerter-Wilmsen T, et al. Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol. 2017;19(6):653–665.
  • Corti P, Young S, Chen CY, et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development. 2011;138(8):1573–1582.
  • Laux DW, Young S, Donovan JP, et al. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development. 2013;140(16):3403–3412.
  • Zhou J, Lee PL, Tsai CS, et al. Force-specific activation of Smad1/5 regulates vascular endothelial cell cycle progression in response to disturbed flow. Proc Natl Acad Sci U S A. 2012;109(20):7770–7775.
  • Lawson ND, Scheer N, Pham VN, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development. 2001;128(19):3675–3683.
  • You LR, Lin FJ, Lee CT, et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435(7038):98–104.
  • Murtomaki A, Uh MK, Choi YK, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2013;140(11):2365–2376.
  • Murphy PA, Kim TN, Huang L, et al. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci U S A. 2014;111(50):18007–18012.
  • Larrivée B, Prahst C, Gordon E, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 2012;22(3):489–500.
  • Poskitt KJ, Marotta T, Culham G, et al. MR quantification of flow in children with vein of galen malformations. Interv Neuroradiol. 2001;7(3):213–222.
  • Li Y, Ahmed R, Rivera-Rivera LA, et al. Serial quantitative and qualitative measurements of flow in vein of galen malformations using 4-dimensional flow magnetic resonance imaging (phase contrast vastly undersampled isotropic projection). World Neurosurg. 2019;126:405–412.
  • Gu T, Korosec FR, Block WF, et al. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol. 2005;26(4):743–749.
  • Johnson KM, Lum DP, Turski PA, et al. 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med. 2008;60(6):1329–1336.
  • Fleischer LH, Young WL, Pile-Spellman J, et al. Relationship of transcranial Doppler flow velocities and arteriovenous malformation feeding artery pressures. Stroke. 1993;24(12):1897–1902.
  • Wasserman BA, Lin W, Tarr RW, et al. Cerebral arteriovenous malformations: flow quantitation by means of two-dimensional cardiac-gated phase-contrast MR imaging. Radiology. 1995;194(3):681–686.
  • Weinstock P, Prabhu SP, Flynn K, et al. Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr. 2015;16(5):584–589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.