2,902
Views
9
CrossRef citations to date
0
Altmetric
Review

Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects

ORCID Icon
Pages 1093-1105 | Received 22 Jun 2021, Accepted 13 Oct 2021, Published online: 01 Nov 2021

References

  • Rao VR, Lowenstein DH. Epilepsy. Curr Biol. 2015;25(17):R742–746.
  • England MJ, Liverman CT, Schultz AM, et al. Epilepsy across the spectrum: promoting health and understanding. A summary of the Institute of Medicine report. Epilepsy Behav. 2012;25(2):266–276.
  • Epilepsy: a public health imperative. Geneva: World Health Organization; 2019.
  • Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365(10):919–926.
  • Wiebe S, Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012;8(12):669–677.
  • Markert MS, Fisher RS. Neuromodulation - science and practice in epilepsy: vagus nerve stimulation, thalamic deep brain stimulation, and responsive neurostimulation. Expert Rev Neurother. 2019;19(1):17–29.
  • Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014;10(5):261–270.
  • Fisher B, DesMarteau JA, Koontz EH, et al. Responsive vagus nerve stimulation for drug resistant epilepsy: a review of new features and practical guidance for advanced practice providers. Front Neurol. 2020;11:610379.
  • Jimenez-Shahed J. Device profile of the percept PC deep brain stimulation system for the treatment of Parkinson’s disease and related disorders. Expert Rev Med Devices. 2021;18(4):319–332.
  • Drees C, McDermott D, Sillau S, et al. Seizure outcome with responsive neurostimulation (RNS) comparing strip versus depth leads. Epilepsy Behav. 2020;112:107402.
  • Krucoff MO, Wozny TA, Lee AT, et al. Operative technique and lessons learned from surgical implantation of the NeuroPace Responsive Neurostimulation® System in 57 consecutive patients. Oper Neurosurg (Hagerstown). 2021;20(2):E98–e109.
  • Jarosiewicz B, Morrell MM. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Rev Med Devices. 2021;18(2):129–138.
  • Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS(®) System). Epilepsy Res. 2019;153:68–70.
  • Morrell MJ, Halpern C. Responsive direct brain stimulation for epilepsy. Neurosurg Clin N Am. 2016;27(1):111–121.
  • Matias CM, Sharan A, Wu C. Responsive neurostimulation for the treatment of epilepsy. Neurosurg Clin N Am. 2019;30(2):231–242.
  • Weber PB, Kapur R, Gwinn RP, et al. Infection and erosion rates in trials of a cranially implanted neurostimulator do not increase with subsequent neurostimulator placements. Stereot Funct Neuros. 2017;95(5):325–329
  • Lee B, Zubair MN, Marquez YD, et al. A single-center experience with the NeuroPace RNS System: a review of techniques and potential problems. World Neurosurg. 2015;84(3):719–726.
  • Jobst BC, Skarpaas TL, Morrell MJ. Response: therapeutic brain-responsive neurostimulation in eloquent cortex can be delivered without symptoms. Epilepsia. 2017;58(8):1488.
  • Hixon AM, Brown MG, McDermott D, et al. RNS modifications to eliminate stimulation-triggered signs or symptoms (STS): case series and practical guide. Epilepsy Behav. 2020;112:107327.
  • Niketeghad S, Muralidharan A, Patel U, et al. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject. J Neurosurg. 2019;132(6):2000–2007.
  • Quraishi IH, Hirsch LJ. Patient-detectable responsive neurostimulation as a seizure warning system. Epilepsia. 2021;62(7):e110–e116.
  • Bergey GK, Morrell MJ, Mizrahi EM, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84(8):810–817.
  • Heck CN, King-Stephens D, Massey AD, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014;55(3):432–441.
  • Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–1304.
  • Nair DR, Laxer KD, Weber PB, et al., Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020;95(9):e1244–e1256.
  • Geller EB. Responsive neurostimulation: review of clinical trials and insights into focal epilepsy. Epilepsy Behav. 2018;88:11–20.
  • Jobst BC, Kapur R, Barkley GL, et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia. 2017;58(6):1005–1014.
  • Geller EB, Skarpaas TL, Gross RE, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58(6):994–1004.
  • Razavi B, Rao VR, Lin C, et al. Real-world experience with direct brain-responsive neurostimulation for focal onset seizures. Epilepsia. 2020;61(8):1749–1757.
  • Ma BB, Rao VR. Responsive neurostimulation: candidates and considerations. Epilepsy Behav. 2018;88:388–395.
  • Benbadis SR, Geller E, Ryvlin P, et al. Putting it all together: options for intractable epilepsy: an updated algorithm on the use of epilepsy surgery and neurostimulation. Epilepsy Behav. 2018;88:33–38.
  • Feyissa AM, Mohamed AS, Tatum WO, et al., Brain-responsive neurostimulation in adult-onset rasmussen’s encephalitis. 2021;Epilepsy Behav Rep. 15:100445.
  • Chen H, Dugan P, Chong DJ, et al. Application of RNS in refractory epilepsy: targeting insula. Epilepsia Open. 2017;2(3):345–349.
  • Nune G, Arcot Desai S, Razavi B, et al. Treatment of drug-resistant epilepsy in patients with periventricular nodular heterotopia using RNS® System: efficacy and description of chronic electrophysiological recordings. Clin Neurophysiol. 2019;130(8):1196–1207.
  • Ernst LD, Krause KL, Kellogg MA, et al. Novel Use of Responsive Neurostimulation (RNS System) in the treatment of super refractory status epilepticus. J Clin Neurophysiol. 2019;36(3):242–245.
  • Ma BB, Fields MC, Knowlton RC, et al. Responsive neurostimulation for regional neocortical epilepsy. Epilepsia. 2020;61(1):96–106.
  • Yang JC, Harid NM, Nascimento FA, et al. Responsive neurostimulation for focal motor status epilepticus. Ann Clin Transl Neurol. 2021;8(6):1353–1361.
  • McDermott DS, Mirro EA, Fetrow K, et al. Brain-Responsive Neurostimulation for the treatment of adults with epilepsy in tuberous sclerosis complex: a case series. Epilepsia Open. 2021;6(2):419–424.
  • Zawar I, Krishnan B, Mackow M, et al. The efficacy, safety, and outcomes of brain-responsive neurostimulation (RNS® System) therapy in older adults. Epilepsia Open. 2021. https://doi.org/10.1002/epi4.12541
  • Enatsu R, Alexopoulos A, Bingaman W, et al. Complementary effect of surgical resection and responsive brain stimulation in the treatment of bitemporal lobe epilepsy: a case report. Epilepsy Behav. 2012;24(4):513–516.
  • Tran DK, Tran DC, Mnatsakayan L, et al. Treatment of multi-focal epilepsy with resective surgery plus responsive neurostimulation (RNS): one institution’s experience. Front Neurol. 2020;11:545074.
  • Youngerman BE, Mahajan UV, Dyster TG, et al. Cost-effectiveness analysis of responsive neurostimulation for drug-resistant focal onset epilepsy. Epilepsia. 2021. https://doi.org/10.1111/epi.17049.
  • Bercu MM, Friedman D, Silverberg A, et al. Responsive neurostimulation for refractory epilepsy in the pediatric population: a single-center experience. Epilepsy Behav. 2020;112:107389.
  • Singhal NS, Numis AL, Lee MB, et al. Responsive neurostimulation for treatment of pediatric drug-resistant epilepsy. Epilepsy Behav Case Rep. 2018;10:21–24.
  • Kokoszka MA, Panov F, La Vega-Talbott M, et al. Treatment of medically refractory seizures with responsive neurostimulation: 2 pediatric cases. J Neurosurg Pediatr. 2018;21(4):421–427.
  • Theroux L, Shah Y, Cukier Y, et al. Improved seizure burden and cognitive performance in a child treated with responsive neurostimulation (RNS) following febrile infection related epilepsy syndrome (FIRES). Epileptic Disord. 2020;22(6):811–816.
  • Mortazavi A, Elliott RS, Phan TN, et al. Responsive neurostimulation for the treatment of medically refractory epilepsy in pediatric patients: strategies, outcomes, and technical considerations. J Neurosurg Pediatr. 2021;1–8.
  • Panov F, Ganaha S, Haskell J, et al. Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy. J Neurosurg Pediatr. 2020;26(5):525–532.
  • Nagahama Y, Zervos TM, Murata KK, et al. Real-world preliminary experience with responsive neurostimulation in pediatric epilepsy: a multicenter retrospective observational study. Neurosurgery. 2021. https://doi.org/10.1093/neuros/nyab343.
  • Baud MO, Schindler K, Rao VR. Under-sampling in epilepsy: limitations of conventional EEG. Clin Neurophysiol Pract. 2021;6:41–49.
  • Rao VR, Leonard MK, Kleen JK, et al. Chronic ambulatory electrocorticography from human speech cortex. Neuroimage. 2017;153:273–282.
  • Wu C, Evans JJ, Skidmore C, et al. Impedance variations over time for a closed-loop neurostimulation device: early experience with chronically implanted electrodes. Neuromodulation. 2013;16(1):46–50.
  • Sillay KA, Rutecki P, Cicora K, et al. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Brain Stimul. 2013;6(5):718–726.
  • Sillay KA, Ondoma S, Wingeier B, et al. Long-term surface electrode impedance recordings associated with gliosis for a closed-loop neurostimulation device. Ann Neurosci. 2018;25(4):289–298.
  • Mirro EA, Halpern CH. Letter: using continuous intracranial electroencephalography monitoring to manage epilepsy patients during COVID-19. Neurosurgery. 2020;87(3):E409–e410.
  • Sisterson ND, Wozny TA, Kokkinos V, et al. A rational approach to understanding and evaluating responsive neurostimulation. Neuroinformatics. 2020;18(3):365–375.
  • Shah AK, Mittal S. Invasive electroencephalography monitoring: indications and presurgical planning. Ann Indian Acad Neurol. 2014;17(Suppl 5):S89–94.
  • Parvizi J, Kastner S. Promises and limitations of human intracranial electroencephalography. Nat Neurosci. 2018;21(4):474–483.
  • Hegde M, Lowenstein DH. The search for circulating epilepsy biomarkers. Biomark Med. 2014;8(3):413–427.
  • Fisher RS, Blum DE, DiVentura B, et al. Seizure diaries for clinical research and practice: limitations and future prospects. Epilepsy Behav. 2012;24(3):304–310.
  • Blum DE, Eskola J, Bortz JJ, et al. Patient awareness of seizures. Neurology. 1996;47(1):260–264.
  • Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol. 2007;64(11):1595–1599.
  • Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279–288.
  • Quigg M, Sun F, Fountain NB, et al. Interrater reliability in interpretation of electrocorticographic seizure detections of the responsive neurostimulator. Epilepsia. 2015;56(6):968–971.
  • Quigg M, Skarpaas TL, Spencer DC, et al. Electrocorticographic events from long-term ambulatory brain recordings can potentially supplement seizure diaries. Epilepsy Res. 2020;161:106302.
  • Chen H, Koubeissi M. Seizure occurrences: patient report, scalp EEG, and RNS electrocorticography findings. J Clin Neurophysiol. 2020;37(4):306–309.
  • Arcot Desai S, Tcheng TK, Morrell MJ. Quantitative electrocorticographic biomarkers of clinical outcomes in mesial temporal lobe epileptic patients treated with the RNS(R) system. Clin Neurophysiol. 2019;130(8):1364–1374.
  • Venkatesh P, Sneider D, Danish M, et al. Quantifying a frequency modulation response biomarker in responsive neurostimulation. J Neural Eng. 2021;18(4):046017.
  • Young MG, Vadera S, Lin JJ, et al. Using electrocorticogram baseline seizure frequency to assess the efficacy of responsive neurostimulation. Epilepsy Behav. 2018;85:7–9.
  • Chiang S, Haut SR, Ferastraoaru V, et al. Individualizing the definition of seizure clusters based on temporal clustering analysis. Epilepsy Res. 2020;163:106330.
  • Geller AS, Friedman D, Fang M, et al. Running-down phenomenon captured with chronic electrocorticography. Epilepsia Open. 2018;3(4):528–534.
  • Fan JM, Chiang S, Rao VR. Evidence for long memory in focal seizure duration. Epilepsia Open. 2021;6(1):140–148.
  • Sun FT, Arcot Desai S, Tcheng TK, et al. Changes in the electrocorticogram after implantation of intracranial electrodes in humans: the implant effect. Clin Neurophysiol. 2018;129(3):676–686.
  • Didato G, Chiesa V, Villani F, et al. Bitemporal epilepsy: a specific anatomo-electro-clinical phenotype in the temporal lobe epilepsy spectrum. Seizure. 2015;31:112–119.
  • Smart O, Rolston JD, Epstein CM, et al. Hippocampal seizure-onset laterality can change over long timescales: a same-patient observation over 500 days. Epilepsy Behav Case Rep. 2013;1:56–61.
  • Spencer D, Gwinn R, Salinsky M, et al. Laterality and temporal distribution of seizures in patients with bitemporal independent seizures during a trial of responsive neurostimulation. Epilepsy Res. 2011;93(2–3):221–225.
  • King-Stephens D, Mirro E, Weber PB, et al., Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia. 2015;56(6):959–967.
  • DiLorenzo DJ, Mangubat EZ, Rossi MA, et al. Chronic unlimited recording electrocorticography-guided resective epilepsy surgery: technology-enabled enhanced fidelity in seizure focus localization with improved surgical efficacy. J Neurosurg. 2014;120(6):1402–1414.
  • Feyissa AM, Mirro EA, Wabulya A, et al. Brain-responsive neurostimulation treatment in patients with GAD65 antibody-associated autoimmune mesial temporal lobe epilepsy. Epilepsia Open. 2020;5(2):307–313.
  • Hirsch LJ, Mirro EA, Salanova V, et al., Mesial temporal resection following long-term ambulatory intracranial EEG monitoring with a direct brain-responsive neurostimulation system. Epilepsia. 2020;61(3):408–420.
  • Englot DJ. Responsive neurostimulation in epilepsy: wall to block seizures or bridge to resection? Epilepsy Curr. 2020;20(5):265–266.
  • Chan AY, Knowlton RC, Chang EF, et al. Seizure localization by chronic ambulatory electrocorticography. Clin Neurophysiol Pract. 2018;3:174–176.
  • Rao VR, Leguia MG, Tcheng TK. Cues for seizure timing. Epilepsia. 2021;62(Suppl S1):S15–s31.
  • Quraishi IH, Mercier MR, Skarpaas TL, et al. Early detection rate changes from a brain-responsive neurostimulation system predict efficacy of newly added antiseizure drugs. Epilepsia. 2020;61(1):138–148.
  • Skarpaas TL, Tcheng TK, Morrell MJ. Clinical and electrocorticographic response to antiepileptic drugs in patients treated with responsive stimulation. Epilepsy Behav. 2018;83:192–200.
  • Tjong E, Peng YY. Antiepileptic drug optimization using ambulatory electrocorticographic data from an implanted brain-responsive neurostimulator. Clin Case Rep. 2020;8(3):441–448.
  • Warner NM, Gwinn RP, Doherty MJ. Individualizing therapies with responsive epilepsy neurostimulation - A mirtazapine case study of hippocampal excitability. Epilepsy Behav Case Rep. 2016;6:70–72.
  • Mackow MJ, Krishnan B, Bingaman WE, et al. Increased caffeine intake leads to worsening of electrocorticographic epileptiform discharges as recorded with a responsive neurostimulation device. Clin Neurophysiol. 2016;127(6):2341–2342.
  • Oster JM, Tatum P, Monigan C, et al. Seizures noted by responsive neurostimulation from e-cigarette use (vaping). J Clin Neurophysiol. 2021;Publish Ahead of Print. https://doi.org/10.1097/WNP.0000000000000866. online ahead of print.
  • Kinnear KM, Warner NM, Gersappe A, et al. Pilot data on responsive epilepsy neurostimulation, measures of sleep apnea and continuous glucose measurements. Epilepsy Behav Case Rep. 2018;9:33–36.
  • Pappas A, Kubsad S, Baud MO, et al. Does glucose influence multidien cycles of interictal and/or ictal activities? Seizure. 2021;85:145–150.
  • Wright KE, Kollmyer DM, Warner NM, et al., How might tissue glucose influence responsive neurostimulation detection? 2019;Epilepsy Behav Rep. 12:100331.
  • Spencer DC, Sun FT, Brown SN, et al. Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring. Epilepsia. 2016;57(9):1495–1502.
  • Anderson CT, Tcheng TK, Sun FT, et al. Day-night patterns of epileptiform activity in 65 patients with long-term ambulatory electrocorticography. J Clin Neurophysiol. 2015;32(5):406–412.
  • Duckrow RB, Tcheng TK. Daily variation in an intracranial EEG feature in humans detected by a responsive neurostimulator system. Epilepsia. 2007;48(8):1614–1620.
  • Frauscher B, Gotman J. Sleep, oscillations, interictal discharges, and seizures in human focal epilepsy. Neurobiol Dis. 2019;127:545–553.
  • Parhizgar F, Nugent K, Raj R. Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. J Clin Sleep Med. 2011;7(4):401–407.
  • Marzec M, Edwards J, Sagher O, et al. Effects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. Epilepsia. 2003;44(7):930–935.
  • Zambrelli E, Saibene AM, Furia F, et al. Laryngeal motility alteration: a missing link between sleep apnea and vagus nerve stimulation for epilepsy. Epilepsia. 2016;57(1):e24–27.
  • Voges BR, Schmitt FC, Hamel W, et al. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56(8):e99–e103.
  • Ruoff L, Jarosiewicz B, Zak R, et al. Sleep disruption is not observed with brain-responsive neurostimulation for epilepsy. Epilepsia Open. 2020;5(2):155–165.
  • Gliske SV, Irwin ZT, Chestek C, et al. Variability in the location of high frequency oscillations during prolonged intracranial EEG recordings. Nat Commun. 2018;9(1):2155.
  • Topalovic U, Aghajan ZM, Villaroman D, et al., Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron. 2020; 108(2): 322–334.e329.
  • Eddy CM, Cavanna AE. Video-electroencephalography investigation of ictal alterations of consciousness in epilepsy and nonepileptic attack disorder: practical considerations. Epilepsy Behav. 2014;30:24–27.
  • Benbadis SR, Beniczky S, Bertram E, et al. The role of EEG in patients with suspected epilepsy. Epileptic Disord. 2020;22(2):143–155.
  • Issa Roach AT, Chaitanya G, Riley KO, et al. Optimizing therapies for neurobehavioral comorbidities of epilepsy using chronic ambulatory electrocorticography. Epilepsy Behav. 2020;102:106814.
  • Hegde M, Chiong W,Rao VR. New Ethical and Clinical Challenges in “Closed-Loop” Neuromodulation. Neurology. 2021;96(17):799–804.
  • Yan H, Ibrahim GM. Resective epilepsy surgery involving eloquent cortex in the age of responsive neurostimulation: a value-based decision-making framework. Epilepsy Behav. 2019;99:106479.
  • Haeusermann T, Lechner CR, Fong KC, et al. Closed-loop neuromodulation and self-perception in clinical treatment of refractory epilepsy. AJOB Neurosci 2021:1–13. https://doi.org/10.1080/21507740.2021.1958100
  • Cook MJ, O’Brien TJ, Berkovic SF, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12(6):563–571.
  • Goldenholz DM, Tharayil JJ, Kuzniecky R, et al. Simulating clinical trials with and without intracranial EEG data. Epilepsia Open. 2017;2(2):156–161.
  • Dumanis SB, French JA, Bernard C, et al. Seizure forecasting from idea to reality. Outcomes of the My Seizure Gauge Epilepsy Innovation Institute workshop. eNeuro. 2017;4(6). https://doi.org/10.1523/ENEURO.0349-17.2017
  • Wilson JV, Reynolds EH. Texts and documents. Translation and analysis of a cuneiform text forming part of a Babylonian treatise on epilepsy. Med Hist. 1990;34(2):185–198.
  • Baud MO, Rao VR. Gauging seizure risk. Neurology. 2018;91(21):967–973.
  • Leguia MG, Rao VR, Kleen JK, et al. Measuring synchrony in bio-medical timeseries. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021;31(1):013138.
  • Karoly PJ, Rao VR, Gregg NM, et al., Cycles in epilepsy. Nat Rev Neurol. 2021;17(5):267–284.
  • Baud MO, Kleen JK, Mirro EA, et al., Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9(1): 88.
  • Karoly PJ, Ung H, Grayden DB, et al. The circadian profile of epilepsy improves seizure forecasting. Brain. 2017;140(8):2169–2182.
  • Karoly PJ, Goldenholz DM, Freestone DR, et al. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol. 2018;17(11):977–985.
  • Leguia MG, Andrzejak RG, Rummel C, et al., Seizure Cycles in Focal Epilepsy. JAMA Neurol. 78(4): 454–463. 2021.
  • Gregg NM, Nasseri M, Kremen V, et al. Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy. Brain Commun. 2020;2(1):fcaa008.
  • Mormann F, Andrzejak RG, Elger CE, et al. Seizure prediction: the long and winding road. Brain. 2007;130(2):314–333.
  • Kuhlmann L, Lehnertz K, Richardson MP, et al. Seizure prediction - ready for a new era. Nat Rev Neurol. 2018;14(10):618–630.
  • Karoly PJ, Cook MJ, Maturana M, et al. Forecasting cycles of seizure likelihood. Epilepsia. 2020;61(4):776–786.
  • Kuhlmann L, Karoly P, Freestone DR, et al. Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain. 2018;141(9):2619–2630.
  • Brinkmann BH, Wagenaar J, Abbot D, et al. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain. 2016;139(6):1713–1722.
  • Cook MJ, Varsavsky A, Himes D, et al. The dynamics of the epileptic brain reveal long-memory processes. Front Neurol. 2014;5:217.
  • Karoly PJ, Nurse ES, Freestone DR, et al. Bursts of seizures in long-term recordings of human focal epilepsy. Epilepsia. 2017;58(3):363–372.
  • Maturana MI, Meisel C, Dell K, et al. Critical slowing down as a biomarker for seizure susceptibility. Nat Commun. 2020;11(1):2172.
  • Baud MO, Proix T, Rao VR, et al. Chance and risk in epilepsy. Curr Opin Neurol. 2020;33(2):163–172.
  • Proix T, Truccolo W, Leguia MG, et al., Forecasting seizure risk in adults with focal epilepsy: a development and validation study. Lancet Neurol. 2021;20(2):127–135.
  • Sanchez Fernandez I, Loddenkemper T. Chronotherapeutic implications of cyclic seizure patterns. Nat Rev Neurol. 2018;14(12):696–697.
  • Karoly PJ, Eden D, Nurse ES, et al. Cycles of self-reported seizure likelihood correspond to yield of diagnostic epilepsy monitoring. Epilepsia. 2021;62(2):416–425.
  • Chiong W, Leonard MK, Chang EF. Neurosurgical patients as human research subjects: ethical considerations in intracranial electrophysiology research. Neurosurgery. 2018;83(1):29–37.
  • Henin S, Shankar A, Hasulak N, et al. Hippocampal gamma predicts associative memory performance as measured by acute and chronic intracranial EEG. Sci Rep. 2019;9(1):593.
  • Meisenhelter S, Testorf ME, Gorenstein MA, et al. Cognitive tasks and human ambulatory electrocorticography using the RNS System. J Neurosci Methods. 2019;311:408–417.
  • Aghajan ZM, Schuette P, Fields TA, et al. Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Curr Biol. 2017;27(24):3743–3751.e3743.
  • Stangl M, Topalovic U, Inman CS, et al. Boundary-anchored neural mechanisms of location-encoding for self and others. Nature. 2021;589(7842):420–425.
  • Provenza NR, Matteson ER, Allawala AB, et al. The case for adaptive neuromodulation to treat severe intractable mental disorders. Front Neurosci. 2019;13:152.
  • Scangos KW, Khambhati AN, Daly PM, et al. Closed-loop neuromodulation for treatment-resistant depression. Nat Med, (2021). 27 10 1696–1700 https://doi.org/10.1038/s41591-021-01480-w
  • Scangos KW, Makhoul GS, Sugrue LP, et al. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat Med. 2021;27(2):229–231.
  • Molina R, Okun MS, Shute JB, et al. Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J Neurosurg. 2018;129(2):308–314.
  • Wu H, Adler S, Azagury DE, et al. Brain-responsive neurostimulation for loss of control eating: early feasibility study. Neurosurgery. 2020. https://doi.org/10.1093/neuros/nyaa300.
  • Loring DW, Jarosiewicz B, Meador KJ, et al. Mood and quality of life in patients treated with brain-responsive neurostimulation: the value of earlier intervention. Epilepsy Behav. 2021;117:107868.
  • Loring DW, Kapur R, Meador KJ, et al. Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia. 2015;56(11):1836–1844.
  • Meador KJ, Kapur R, Loring DW, et al. Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav. 2015;45:242–247.
  • Chan AY, Rolston JD, Rao VR, et al. Effect of neurostimulation on cognition and mood in refractory epilepsy. Epilepsia Open. 2018;3(1):18–29.
  • Borchers S, Himmelbach M, Logothetis N, et al. Direct electrical stimulation of human cortex - the gold standard for mapping brain functions? Nat Rev Neurosci. 2012;13(1):63–70.
  • Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown and Company; 1954.
  • Lesser RP, Kim SH, Beyderman L, et al. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology. 1999;53(9):2073–2081.
  • Kossoff EH, Ritzl EK, Politsky JM, et al. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia. 2004;45(12):1560–1567.
  • Rønborg SN, Esteller R, Tcheng TK, et al. Acute effects of brain-responsive neurostimulation in drug-resistant partial onset epilepsy. Clin Neurophysiol. 2021;132(6):1209–1220.
  • Sohal VS, Sun FT. Responsive neurostimulation suppresses synchronized cortical rhythms in patients with epilepsy. Neurosurg Clin N Am. 2011;22(4):481–488.
  • Kokkinos V, Sisterson ND, Wozny TA, et al. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol. 2019;76(7):800–808.
  • Bruzzone MJ, Issa N, Rose S, et al. Insights into the therapeutic effect of responsive neurostimulation assessed with scalp EEG recording: a case report. J Clin Neurophysiol. 2018;35(5):438–441.
  • Khambhati AN, Shafi A, Rao VR, et al. Long-term brain network reorganization predicts responsive neurostimulation outcomes for focal epilepsy. Sci Transl Med. 2021;13(608):eabf6588. 13 608 https://doi.org/10.1126/scitranslmed.abf6588
  • Chiang S, Khambhati AN, Wang ET, et al. Evidence of state-dependence in the effectiveness of responsive neurostimulation for seizure modulation. Brain Stimul. 2021;14(2):366–375.
  • Brown M, Ernst L, Spencer D. Brain-responsive stimulation (RNS) and vagal nerve stimulation (VNS) in combination for the treatment of drug-resistant focal epilepsy. American Epilepsy Society Annual Meeting, Abst. 3.16 (2019).
  • Barbaro MF, Chesney K, Kramer DR, et al. Dual responsive neurostimulation implants for epilepsy. J Neurosurg. 2019;1–7.
  • Silva AB, Khambhati AN, Speidel BA, et al. Effects of anterior thalamic nuclei stimulation on hippocampal activity: chronic recording in a patient with drug-resistant focal epilepsy Epilepsy & Behavior Reports .2021;16:100467.
  • Ernst LD, Steffan PJ, Srikanth P, et al. Electrocorticography analysis in patients with dual neurostimulators supports desynchronization as a mechanism of action for acute vagal nerve stimulator stimulation J Clin Neurophysiol. 2021, https://doi.org/10.1097/WNP.0000000000000847.
  • Kremen V, Brinkmann BH, Kim I, et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J Transl Eng Health Med. 2018;6:2500112.
  • Kwon CS, Jetté N, Ghatan S. Perspectives on the current developments with neuromodulation for the treatment of epilepsy. Expert Rev Neurother. 2020;20(2):189–194.
  • Sun Y, Friedman D, Dugan P, et al. machine learning to classify relative seizure frequency from chronic electrocorticography. J Clin Neurophysiol. 2021;https://doi.org/10.1097/WNP.0000000000000858.
  • Constantino AC, Sisterson ND, Zaher N, et al. Expert-level intracranial electroencephalogram ictal pattern detection by a deep learning neural network. Front Neurol. 2021;12:603868.
  • Sisterson ND, Wozny TA, Kokkinos V, et al. Closed-loop brain stimulation for drug-resistant epilepsy: towards an evidence-based approach to personalized medicine. Neurotherapeutics. 2019;16(1):119–127.
  • Xu K, Zheng Y, Zhang F, et al. An energy efficient AdaBoost cascade method for long-term seizure detection in portable neurostimulators. IEEE Trans Neural Syst Rehabil Eng. 2019;27(11):2274–2283.
  • De Ridder D, Maciaczyk J, Vanneste S. The future of neuromodulation: smart neuromodulation. Expert Rev Med Devices. 2021;18(4):307–317.
  • Giles TX, Bennett J, Stone CE, et al. Characterizing complications of intracranial responsive neurostimulation devices for epilepsy through a retrospective analysis of the federal MAUDE database. Neuromodulation. 2020; https://doi.org/10.1111/ner.13259
  • Wei Z, Gordon CR, Bergey GK, et al. Implant site infection and bone flap osteomyelitis associated with the NeuroPace Responsive Neurostimulation System. World Neurosurg. 2016;88:687.e681–687.e686.
  • Kandler R, Ponnusamy A, Wragg C. Video ambulatory EEG: a good alternative to inpatient video telemetry? Seizure. 2017;47:66–70.
  • Kaundal A, Hegde V, Khan H, et al. Home video EEG telemetry. Pract Neurol. 2021;21(3):212–215.
  • Duun-Henriksen J, Baud M, Richardson MP, et al. A new era in electroencephalographic monitoring? Subscalp devices for ultra-long-term recordings. Epilepsia. 2020;61(9):1805–1817.
  • Viana PF, Duun-Henriksen J, Glasstëter M, et al. 230 days of ultra long-term subcutaneous EEG: seizure cycle analysis and comparison to patient diary. Ann Clin Transl Neurol. 2021;8(1):288–293.
  • Bacher D, Amini A, Friedman D, et al. Validation of an EEG seizure detection paradigm optimized for clinical use in a chronically implanted subcutaneous device. J Neurosci Methods. 2021;358:109220.
  • Weisdorf S, Gangstad SW, Duun-Henriksen J, et al. High similarity between EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy. J Neurophysiol. 2018;120(3):1451–1460.
  • Weisdorf S, Zibrandtsen IC, Kjaer TW. Subcutaneous EEG monitoring reveals AED response and breakthrough seizures. Case Rep Neurol Med.2020 Jan 28;2020:8756917.
  • Weisdorf S, Duun-Henriksen J, Kjeldsen MJ, et al. Ultra-long-term subcutaneous home monitoring of epilepsy-490 days of EEG from nine patients. Epilepsia. 2019;60(11):2204–2214.
  • Stirling RE, Maturana MI, Karoly PJ, et al. Seizure forecasting using a novel sub-scalp ultra-long term EEG monitoring system. Front Neurol. 2021;12:713794.
  • Nadkarni A, Devgun J, Jamal SM, et al. Subcutaneous cardiac rhythm monitors: state of the art review. Expert Rev Med Devices. 2021;18(7):587-596.
  • Chiang S, Fan JM, Rao VR. Bilateral temporal lobe epilepsy: How many seizures are required in chronic ambulatory electrocorticography to estimate the laterality ratio? Epilepsia. 2021 (in press) doi:https://doi.org/10.1111/epi.17113
  • Salanova V, Sperling MR, Gross RE, et al. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317.
  • Salanova V, Witt T, Worth R, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84(10):1017–1025.
  • Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908.
  • Elder C, Friedman D, Devinsky O, et al. Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatment-resistant multifocal epilepsy. Epilepsia Open. 2019;4(1):187–192.
  • Burdette DE, Haykal MA, Jarosiewicz B, et al. Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy. Epilepsy Behav. 2020;112:107354.
  • Kokkinos V, Urban A, Sisterson ND, et al. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalized epilepsy: a case report. Neurosurgery. 2020;87(5):E578–E583.
  • Kwon CS, Schupper AJ, Fields MC, et al. Centromedian thalamic responsive neurostimulation for Lennox-Gastaut epilepsy and autism. Ann Clin Transl Neurol. 2020;7(10):2035–2040.
  • Herlopian A, Cash SS, Eskandar EM, et al. Responsive neurostimulation targeting anterior thalamic nucleus in generalized epilepsy. Ann Clin Transl Neurol. 2019;6(10):2104–2109.
  • Gummadavelli A, Zaveri HP, Spencer DD, et al. Expanding brain-computer interfaces for controlling epilepsy networks: novel thalamic responsive neurostimulation in refractory epilepsy. Front Neurosci. 2018;12:474.
  • Burdette D, Mirro EA, Lawrence M, et al. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: a case series. Epilepsia Open. 2021;6(3):611–617.
  • Gregg NM, Marks VS, Sladky V, et al. Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62(10):e158–e164.
  • Toth E, Kumar S, Ganne C, et al. Machine learning approach to detect focal-onset seizures in the human anterior nucleus of the thalamus. J Neural Eng. 2020;17(6):066004.
  • Pizzo F, Roehri N, Giusiano B, et al. The ictal signature of thalamus and basal ganglia in focal epilepsy: a SEEG study. Neurology. 2021;96(2):e280–e293.
  • Gilron R, Little S, Perrone R, et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat Biotechnol. 2021;39(9):1078–1085.
  • Paz JT, Davidson TJ, Frechette ES, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci. 2013;16(1):64–70.
  • Gregg NM, Sladky V, Nejedly P, et al. Ambulatory IEEG biomarkers and epilepsy rhythms during anterior thalamic nuclei stimulation. American Epilepsy Society Annual Meeting, Abst. 456 (2020).
  • Dümpelmann M. Early seizure detection for closed loop direct neurostimulation devices in epilepsy. J Neural Eng. 2019;16(4):041001.
  • Chiang S, Goldenholz DM, Moss R, et al. Prospective validation study of an epilepsy seizure risk system for outpatient evaluation. Epilepsia. 2020;61(1):29–38.
  • Stirling RE, Grayden DB, D’Souza W, et al. Forecasting seizure likelihood with wearable technology. Front Neurol. 2021;12:704060.
  • Brinkmann BH, Karoly PJ, Nurse ES, et al. Seizure diaries and forecasting with wearables: epilepsy monitoring outside the clinic. Front Neurol. 2021;12:690404.
  • Lhatoo SD, Bernasconi N, Blumcke I, et al. Big data in epilepsy: clinical and research considerations. Report from the Epilepsy Big Data Task Force of the International League Against Epilepsy. Epilepsia. 2020;61(9):1869–1883.