308
Views
1
CrossRef citations to date
0
Altmetric
Review

Analytical review on the biocompatibility of surface-treated Ti-alloys for joint replacement applications

ORCID Icon & ORCID Icon
Pages 699-719 | Received 27 Sep 2021, Accepted 30 Sep 2022, Published online: 20 Oct 2022

References

  • Rhyu KH, Lee SM, Chun YS, et al. Does osteoporosis increase early subsidence of cementless double-tapered femoral stem in hip arthroplasty? J Arthroplasty. 2012;27(7):1305–1309.
  • Issack PS, Lauerman MH, Helfet DL, et al. Fat embolism and respiratory distress associated with cemented femoral arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(2):72–76.
  • Rubash HE, Sinha RK, Shanbhag AS, et al. Pathogenesis of bone loss after total Hip arthroplasty. Orthop Clin North Am. 1998;29(2):173–186.
  • Ramakrishna S, Mayer J, Wintermantel E, et al. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61(9):1189–1224.
  • Pegoretti A, Dorigato A. Fatigue behaviour of biocomposites. In: Ambrosio L, editor. Biomedical composites. New Delhi: Woodhead Publishing; 2017. p. 465–506.
  • Castagnini F, Valente G, Crimi G, et al. Component positioning and ceramic damage in cementless ceramic-on-ceramic total Hip arthroplasty. J Orthop Sci. 2019;24(4):643–651.
  • Kaur M, Singh K. Review on Titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102:844–862.
  • Podlipec R, Punzón-Quijorna E, Pirker L, et al. Revealing inflammatory indications induced by titanium alloy wear debris in periprosthetic tissue by label-free correlative high-resolution ion, electron and optical microspectroscopy. Materials (Basel). 2021 Jun 3;14(11):3048.
  • Yup Lee J, Kim S-Y. Alumina-on-polyethylene bearing surfaces in total hip arthroplasty. Open Orthop J. 2010;4(1):56–60.
  • Schwartsmann CR, Boschin LC, Gonçalves RZ, et al. New bearing surfaces in total hip replacement. Rev Bras Ortop. 2012;47(2):154–159. (English Ed).
  • Affatato S, Spinelli M, Zavalloni M, et al. Ceramic-on-metal for total Hip replacement: mixing and matching can lead to high wear. Artif Organs. 2010;34(4):319–323.
  • Gallo J, Goodman SB, Lostak J, et al. Advantages and disadvantages of ceramic on ceramic total Hip arthroplasty: a review. Biomed Pap. 2012;156(3):204–212.
  • Oliveira CA, Candelária IS, Oliveira PB. Metallosis: a diagnosis not only in patients with metal-on-metal prostheses. Eur J Radiol Open. 2015;2:3–6.
  • Vendittoli PA, Shahin M, Rivière C. Ceramic-on-ceramic total Hip arthroplasty is superior to metal-on-conventional Polyethylene at 20-year follow-up: a randomised clinical trial. Orthop Traumatol Surg Res. 2021;107(1):102744.
  • Shahemi N, Liza S, Abbas AA, et al. Long-term wear failure analysis of uhmwpe acetabular cup in total Hip replacement. J Mech Behav Biomed Mater. 2018;87:1–9.
  • Rieker CB. Tribology of total Hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev. 2016;1(2):52–57.
  • Fokter SK, Levašič V, Kovač S. The innovation trap: modular neck in total Hip arthroplasty. Zdr. Vestn. 2017;86(3):115–126.
  • Osman K, Panagiotidou AP, Khan M, et al. corrosion at the head-neck interface of current designs of modular femoral components. Bone Joint J. 2016;98(5):579–584.
  • Goldstein ZH, Estrera K, Levine BR. Taper failure after large-diameter metal-on-metal total Hip arthroplasty. Orthopedics. 2016;39(5):e984–e987.
  • Ullmark G. Femoral head fractures: hemiarthroplasty or total Hip arthroplasty. HIP Int. 2014;24(10_suppl):S12–S14
  • Currey JD. The mechanical adaptations of bones. New Jersey: Princeton University Press; 1984.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015;87:1–57.
  • Wan P, Ren Y, Zhang B, et al. effect of nitrogen on blood compatibility of nickel-free high nitrogen stainless steel for biomaterial. Mater Sci Eng C. 2010;30(8):1183–1189.
  • Katti KS. Biomaterials in total joint replacement. Colloids Surf B Biointerfaces. 2004;39(3):133–142.
  • Learmonth ID. Biocompatibility: a biomechanical and biological concept in total Hip replacement. Surgeon. 2003;1(1):1–8.
  • Cholvin NR, Bayne NR. General Compatibility. In: von Recum AF, editor. Handbook of biomaterials evaluation, scientific. technical and clinical testing of implant materials. New York: Taylor & Francis; 1999. p. 507–522.
  • Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering: a review. J Biomater Sci Polym Ed. 2019;30(14):1308–1355.
  • Lu H, Ren S, Li X, et al. Poly (ethylene glycol)/chitosan/sodium glycerophosphate gel replaced the joint capsule with slow-release lubricant after joint surgery. J Biomater Sci Polym Ed. 2018;29(11):1331–1343.
  • Pişkin E. Review biodegradable polymers as biomaterials. J Biomater Sci Polym Ed. 1995;6(9):775–795.
  • Wang C, Wang S, Yang Y, et al. Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant. J Biomater Sci Polym Ed. 2018;29(13):1595–1611.
  • Xu H, Chen K, Zhang D, et al. Torsional friction behavior of the contact interface between the materials of an artificial knee joint replacement. J Biomater Sci Polym Ed. 2018;29(5):562–581.
  • Zhang H, Blunt L, Jiang X, et al. The significance of the micropores at the stem-cement interface in total Hip replacement. J Biomater Sci Polym Ed. 2011;22(7):845–856.
  • Black J. Biological performance of materials: fundamentals of biocompatibility. 4th ed. New York (NY): Taylor & Francis; 2006.
  • Christel P, Meunier A, Lee AJC, editors. Biological and Biomechanical Performance of Biomaterials. Proceedings of the Fifth European Conference on Biomaterials; 1985 Sept 4-6; Paris, France. Elsevier. p.81–86.
  • Michael S, Ramona V. Biocompatible polymers, metals, and composites. Journal of Clinical Engineering. 1983;8(3):234
  • Kunčická L, Kocich R, Lowe TC. Advances in metals and alloys for joint replacement. Prog Mater Sci. 2017;88:232–280.
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Pro Mater Sci. 2009;54(3):397–425.
  • Long M, Rack HJ. Titanium alloys in total joint replacement - A materials science perspective. Biomaterials. 1998;19(18):1621–1639.
  • De Mello MG, Dainese BP, Caram R, et al. Influence of heating rate and aging temperature on omega and alpha phase precipitation in Ti–35Nb alloy. Mater Charact. 2018;145:268–276.
  • Niinomi M, Nakai M, Liu H, et al. Development of biomedical titanium alloys with a focus on controlling young’s modulus. In: Venkatesh V, Pilchak AL, Allison JE, et al., editors. Proceedings of the 13th World Conference on Titanium; 2015 Aug 16-20; San Diego, California, USA. New Jersey: Willey;2016. p. 1655–1663.
  • Narushima T. New-generation metallic biomaterials. In: Niinomi M, editor. Metals for biomedical devices. Cambridge: Elsevier; 2010. p. 355–378.
  • Park JB, Kon Kim Y. Metallic biomaterials. In: Bronzino JD, Peterson DR, editors. Biomedical engineering fundamentals. Boca Raton: Taylor & Francis; 2015. p. 28.
  • Cremasco A, Ferreira I, Caram R. Effect of heat treatments on mechanical properties and fatigue resistance of Ti-35Nb alloy used as biomaterial. Mater Sci Forum. 2010;636-637:68–75.
  • Donaghy CL, McFadden R, Smith GC, et al. Fibre laser treatment of beta TNZT titanium alloys for load-bearing implant applications: effects of surface physical and chemical features on mesenchymal stem cell response and Staphylococcus aureus bacterial attachment. Coatings. 2019;9(3):186.
  • Schmutz P, Quach-Vu N-C, Gerber I. Metallic medical implants: electrochemical characterization of corrosion processes. Electrochem Soc Interface. 2008;17(2):35–40
  • Hall DJ, Pourzal R, Jacobs JJ, et al. metal wear particles in hematopoietic marrow of the axial skeleton in patients with prior revision for mechanical failure of a Hip or knee arthroplasty. J Biomed Mater Res - Part B Appl Biomater. 2019;107(6):1930–1936.
  • Pałka K, Pokrowiecki R. Porous titanium implants: a review. Adv Eng Mater. 2018;20(5):1700648.
  • Jager M, Jennissen HP, Dittrich F, et al. Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials (Basel). 2017;10(11):1302.
  • Do Nascimento RM, De Carvalho VR, Govone JS, et al. Effects of negatively and positively charged Ti metal surfaces on ceramic coating adhesion and cell response. J Mater Sci Mater Med. 2017;28(2):33.
  • Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2(4):176–194.
  • Katsikogianni M, Missirlis YF, Harris L, et al. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater. 2004;8:37–57.
  • Liu C, Chu PK, Lin G, et al. Effects of Ti/TiN multilayer on corrosion resistance of nickel-titanium orthodontic brackets in artificial saliva. Corros Sci. 2007;49(10):3783–3796.
  • Kavalar R, Fokter SK, Lamovec J, et al. Total Hip arthroplasty-related osteogenic osteosarcoma: case report and review of the literature. Eur J Med Res. 2016 Mar 1;21(1):8.
  • Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer’s Dis. 2011;2011:276393.
  • Schifman RB, Luevano DR. Aluminum toxicity: evaluation of 16-year trend among 14 919 patients and 45 480 results. Arch Pathol Lab Med. 2018;142:742–746.
  • Bombac D, Brojan M, Fajfar P, et al. review of materials in medical applications. RMZ Mater. Geoenviron. 2007;54. 471–499.
  • Chan CW, Carson L, Smith GC, et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering. Appl Surf Sci. 2017;404:67–81.
  • Cunha A, Elie AM, Plawinski L, et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl Surf Sci. 2016;360:485–493.
  • Arabnejad S, Johnston B, Tanzer M, et al. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total Hip arthroplasty. J Orthop Res. 2017;35(8):1774–1783.
  • Rocha RC, Ag de S G, Sn da S, et al. surface, microstructural, and adhesion strength investigations of a bioactive hydroxyapatite-titanium oxide ceramic coating applied to Ti-6Al-4V alloys by plasma thermal spraying. Mater Res. 2018;21(4):e20171144.
  • Prakash C, Kansal HK, Pabla BS, et al. Electric discharge machining - A potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng Part B. 2016;230(2):331–353.
  • Rautray TR, Narayanan R, Kwon TY, et al. Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater. 2010;93(2):581–591.
  • Zhao X, Liu X, Ding C, et al. In vitro bioactivity of plasma-sprayed TiO2 coating after sodium hydroxide treatment. Surf Coat Technol. 2006;200(18–19):5487–5492.
  • Prakash C, Kansal HK, Pabla BS, et al. Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process. 2017;32(3):274–285.
  • Roşu RA, Şerban VA, Bucur AI, et al. Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying. Appl Surf Sci. 2012;258(8):3871–3876.
  • Prakash C, Kansal HK, Pabla BS, et al. Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform. 2015;24(9):3622–3633.
  • Kumar M, Kumar R, Kumar S, et al. Biomechanical Properties of orthopedic and dental implants: a comprehensive review. In: Uthayakumar M, Raj S, Ko T, et al., editors. Handbook of research on green engineering techniques for modern manufacturing. Hershey: IGI Global; 2019. p. 1–13. 10.4018/978-1-5225-5445-5.ch001
  • Milella E, Cosentino F, Licciulli A, et al. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials. 2001;22(11):1425–1431.
  • Chang MC, Ko CC, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003;24(17):2853–2862.
  • Lee CK. Fabrication, characterization and wear corrosion testing of bioactive hydroxyapatite/nano-TiO2 composite coatings on anodic Ti-6Al-4V substrate for biomedical applications. Mater Sci Eng B Solid-State Mater Adv Technol. 2012;177(11):810–818.
  • Harun WSW, Asri RIM, Alias J, et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram Int. 2018;44:1250–1268.
  • Rahmati B, Sarhan AAD, Zalnezhad E, et al. Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility. Ceram Int. 2016;42(1):466–480.
  • Gan JA, Berndt CC. Plasma surface modification of metallic biomaterials. In: Wen C, editor. Surface coating and modification of metallic biomaterials. Cambridge: Woodhead Publishing; 2015. p. 103–157.
  • Tsui YC, Doyle C, Clyne TW. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: mechanical properties and residual stress levels. Biomaterials. 1998;19(22):2015–2029.
  • Prakash C, Uddin MS. Surface modification of β-phase Ti implant by hydroxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Technol. 2017;326:134–145.
  • Prakash C, Singh S, Pabla BS, et al. Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surf Coat Technol. 2018;346:9–18.
  • Ramires PA, Romito A, Cosentino F, et al. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials. 2001;22(12):1467–1474.
  • Prakash C, Singh S, Singh M, et al. Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy. Vacuum. 2018;158:180–190.
  • Singh H, Prakash C, Singh S. Plasma Spray Deposition of HA-TiO2 on β-phase Ti-35Nb-7Ta-5Zr Alloy for Hip Stem: characterization of Bio-mechanical properties, wettability, and wear resistance. J Bionic Eng. 2020;17(5):1029–1044.
  • Singh H, Rana PK, Singh J. Plasma spray deposition of HA–TiO2 composite coating on Ti–6Al–4V alloy for orthopedic applications. In: Singh S, Prakash C, Ramakrishna S, et al., editors. Advances in materials processing: lecture notes in mechanical engineering. Singapore: Springer; 2020. p. 13–20. 10.1007/978-981-15-4748-5_2
  • Khanna R, Kokubo T, Matsushita T, et al. fabrication of dense α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial Hip joint. Mater Sci Eng C. 2016;69:1229–1239.
  • Khanna R, Kokubo T, Matsushita T, et al. Novel artificial Hip joint: a layer of alumina on Ti-6Al-4V alloy formed by micro-arc oxidation. Mater Sci Eng C. 2015;55:393–400.
  • Ohki M, Takahashi S, Jinnai R, et al. Interfacial strength of plasma-sprayed hydroxyapatite coatings. J Therm Spray Technol. 2020;29(5):1119–1133.
  • Bansal P, Singh G, Sidhu HS. Plasma-Sprayed HA/Sr reinforced coating for improved corrosion resistance and surface properties of Ti13Nb13Zr titanium alloy for biomedical implants. J Mater Res. 2021;36(2):431–442.
  • Singh G, Sidhu Ss, Bains PS, et al. On surface Modification of Ti Alloy by electro discharge coating using hydroxyapatite powder mixed dielectric with graphite tool. J Bio- Tribo-Corrosion. 2020;6(3):91.
  • Amin Yavari S, Ahmadi SM, van der Stok J, et al. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. J Mech Behav Biomed Mater. 2014;36:109–119.
  • Doe Y, Ida H, Seiryu M, et al. Titanium surface treatment by calcium modification with acid-etching promotes osteogenic activity and stability of dental implants. Materialia. 2020;12:100801.
  • Amin Yavari S, Wauthle R, Böttger AJ, et al. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting. Appl Surf Sci. 2014;290:287–294.
  • Yu L, Li J, Wang D, et al. Improved antimicrobial activity and bioactivity of porous CaP–TiO2 coating through surface nanofunctionalisation. Mater Technol. 2015;30(sup6):B109–B114.
  • Clyne TW, Troughton SC. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int Mater Rev. 2019;64(3):127–162.
  • Zhang R, Xu N, Liu X, et al. Dose-dependent enhancement of bioactivity by surface ZnO nanostructures on acid-etched pure titanium. Adv Appl Ceram. 2019;118(3):121–125.
  • Du S, Zhang K, Wen M, et al. Optimizing the tribological behavior of tantalum carbide coating for the bearing in total Hip joint replacement. Vacuum [Internet]. 2018;150:222–231.
  • Liu D, Ma Z, Zhang W, et al. Superior anti-wear biomimetic artificial joint based on high-entropy alloy coating on porous Ti6Al4V. Tribol Int [Internet]. 2021;158:106937.
  • Saidi R, Raeissi K, Ashrafizadeh F, et al. The effect of zinc oxide coating morphology on corrosion performance of Ti-6Al-4 V alloys. J Alloys Compd [Internet]. 2021;883:160771.
  • Songur F, Dikici B, Niinomi M, et al. The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: the combined effect of duty cycle and the deposition frequency. Surf Coat Technol [Internet]. 2019;374:345–354.
  • Hee AC, Martin PJ, Bendavid A, et al. Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti-13Nb-13Zr alloy for bio-implants applications. Wear [Internet]. 2018;400–401:31–42.
  • Dos Santos ML, Dos Santos Riccardi C, de Almeida Filho E, et al. Calcium phosphates of biological importance based coatings deposited on Ti-15Mo alloy modified by laser beam irradiation for dental and orthopedic applications. Ceram Int [Internet]. 2018;44(18):22432–22438.
  • Kao WH, Su YL, Horng JH, et al. Tribological, electrochemical and biocompatibility properties of Ti6Al4V alloy produced by selective laser melting method and then processed using gas nitriding,CN or Ti-C:H coating treatments. Surf Coat Technol. 2018;350:172–187.
  • Xu D, Lu Z, Wang T, et al. Novel Ti-based alloys prepared with different heat treatment strategies as antibacterial biomedical implants. Mater Des. 2021;205:109756.
  • Lei Z, Zhang H, Zhang E, et al. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. Mater Sci Eng C. 2018;92:121–131.
  • Al-Zain Y, Yamamoto A, AlAjlouni JM, et al. Corrosion behavior, in vitro and in vivo biocompatibility of a newly developed Ti–16Nb–3Mo–1Sn superelastic alloy. Mater Sci Eng C. 2019;104:109906.
  • Hussein MA, Kumar AM, Ankah N, et al. Thermal treatment effect on the surface and in vitro corrosion characteristics of arc deposited TiN coating on Ti alloy for orthopedic applications. Ceram Int. 2021 May 8;11. 10.1016/j.ceramint.2021.05.032
  • Santos PB, Baldin EK, Krieger DA, et al. Wear performance and osteogenic differentiation behavior of plasma electrolytic oxidation coatings on Ti-6Al-4V alloys: potential application for bone tissue repairs. Surf Coat Technol. 2021;417:127179.
  • Hsu HC, Hsu SK, Wu SC, et al. Surface modification of nanotubular anodized Ti–7.5Mo alloy using NaOH treatment for biomedical application. Thin Solid Films. 2020;710:138273.
  • P B, V U. In Vitro bioactivity, biocompatibility and corrosion resistance of multi-ionic (Ce/Si) co-doped hydroxyapatite porous coating on Ti-6Al-4V for bone regeneration applications. Mater Sci Eng C. 2021;119:111620.
  • Hu N, Xie L, Liao Q, et al. A more defective substrate leads to a less defective passive layer: enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement. Acta Biomater. 2021;126:524–536.
  • Raynova S, Yang F, Bolzoni L. The effect of thermomechanical treatments on the properties of powder metallurgy Ti–5Fe alloy. Mater Sci Eng A. 2021;801:140389.
  • Kuczyńska-Zemła D, Kijeńska-Gawrońska E, Chlanda A, et al. Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rolling. Appl Surf Sci. 2020;511:145523.
  • Kyzioł K, Rajczyk J, Wolski K, et al. Dual-purpose surface functionalization of Ti-6Al-7Nb involving oxygen plasma treatment and Si-DLC or chitosan-based coatings. Mater Sci Eng C. 2021;121:111848.
  • Wang X, Li B, Zhou L, et al. Influence of surface structures on biocompatibility of TiO2/HA coatings prepared by MAO. Mater Chem Phys. 2018;215:339–345.
  • Santos-Coquillat A, Gonzalez Tenorio R, Mohedano M, et al. Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Appl Surf Sci. 2018;454:157–172.
  • Sharifahmadian O, Salimijazi HR, Fathi MH, et al. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings. Surf Coat Technol. 2013;233:74–79.
  • Yuan Y, Hays MP, Hardwidge PR, et al. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017;7(23):14254–14261.
  • Arahman N, Maimun T, Mukramah, et al. The study of membrane formation via phase inversion method by cloud point and light scattering experiment. AIP Conf Proc. 2017;1788:30018.
  • Menzies KL, Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optometry Vision Sci. 2010;87(6):387–399.
  • Bolzoni L, Alqattan M, Peters L, et al. Ternary Ti alloys functionalised with antibacterial activity. Sci Rep. 2020;10(1):1–13.
  • Gao ZY, Sun W, Hu YH, et al. Anisotropic surface broken bond properties and wettability of calcite and fluorite crystals. Trans Nonferrous Met Soc China. 2012;22(5):1203–1208. (English Ed).
  • Xie J, Zhang Q, Mao S, et al. Anisotropic crystal plane nature and wettability of fluorapatite. Appl Surf Sci. 2019;493:294–307.
  • Li Z, Rao F, Corona-Arroyo MA, et al. Comminution effect on surface roughness and flotation behavior of malachite particles. Miner Eng. 2019;132:1–7.
  • Wang X, Zhang Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 2020;371:55–63.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–994.
  • Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–551.
  • Ke Z, Yi C, Zhang L, et al. Characterization of a new Ti-13Nb-13Zr-10Cu alloy with enhanced antibacterial activity for biomedical applications. Mater Lett. 2019;253:335–338.
  • Kang MK, Moon SK, Kwon JS, et al. Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys. Mater Res Bull. 2012;47(10):2952–2955.
  • Hu J, Li H, Wang X, et al. effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. Mater Sci Eng C. 2020;115:110921.
  • Wang X, Qiao J, Yuan F, et al. In situ growth of self-organized Cu-containing nano-tubes and nano-pores on Ti90-xCu10Alx (x=0, 45) alloys by one-pot anodization and evaluation of their antimicrobial activity and cytotoxicity. Surf Coat Technol. 2014;240:167–178.
  • Shirai T, Tsuchiya H, Shimizu T, et al. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res - Part B Appl Biomater. 2009;91(1):373–380.
  • Zhang E, Li F, Wang H, et al. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C. 2013;33(7):4280–4287.
  • Krakhmalev P, Yadroitsev I, Yadroitsava I, et al. Functionalization of biomedical Ti6Al4V via in situ alloying by Cu during laser powder bed fusion manufacturing. Materials (Basel). 2017;10(10):1154.
  • Liu R, Tang Y, Zeng L, et al. In vitro and in vivo studies of antibacterial copper-bearing titanium alloy for dental application. Dent Mater. 2018;34(8):1112–1126.
  • Tao SC, Xu JL, Yuan L, et al. Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti–3Cu alloys. J Alloys Compd. 2020;812:152142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.