614
Views
0
CrossRef citations to date
0
Altmetric
Review

An update of interbody cages for spine fusion surgeries: from shape design to materials

, , , &
Pages 977-989 | Received 05 Oct 2022, Accepted 04 Jan 2023, Published online: 08 Jan 2023

References

  • Fretes N, Vellios E, Sharma A, et al. Radiographic and functional outcomes of bisphosphonate use in lumbar fusion: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2020 Feb;29(2):272–281.
  • van Jonbergen HP, Spruit M, Anderson PG, et al. Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J. 2005 Nov-Dec;5(6):645–649. discussion 649.
  • Tye GW, Graham RS, Broaddus WC, et al. Graft subsidence after instrument-assisted anterior cervical fusion. J Neurosurg. 2002 Sep;97(2 Suppl):186–192.
  • Chen Y, Lü G, Wang B, et al. A comparison of anterior cervical discectomy and fusion (ACDF) using self-locking stand-alone polyetheretherketone (PEEK) cage with ACDF using cage and plate in the treatment of three-level cervical degenerative spondylopathy: a retrospective study with 2-year follow-up. Eur Spine J. 2016 Jul;25(7):2255–2262.
  • Yoon ST, Konopka JA, Wang JC, et al. ACDF graft selection by surgeons: survey of AOSpine members. Global Spine J. 2017 Aug;7(5):410–416.
  • Schimmel JJ, Poeschmann MS, Horsting PP, et al. PEEK cages in lumbar fusion: mid-term clinical outcome and radiologic fusion. Clin Spine Surg. 2016 Jun;29(5):E252–8.
  • Canseco JA, Karamian BA, DiMaria SL, et al. Static VERSUS EXPANdable Polyether Ether Ketone (PEEK) interbody cages: a comparison of one-year clinical and radiographic outcomes for one-level transforaminal lumbar interbody fusion. World Neurosurg. 2021 Aug;152:e492–e501.
  • Yao YC, Chou PH, Lin HH, et al. Outcome of Ti/PEEK Versus PEEK cages in minimally invasive transforaminal lumbar interbody fusion. Global Spine J. 2021 Mar;18:21925682211000323.
  • Campbell PG, Cavanaugh DA, Nunley P, et al. PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence. Neurosurg Focus. 2020 Sep;49(3):E10.
  • Singhatanadgige W, Sukthuayat A, Tanaviriyachai T, et al. Risk factors for polyetheretherketone cage subsidence following minimally invasive transforaminal lumbar interbody fusion. Acta Neurochir (Wien). 2021 Sep;163(9):2557–2565.
  • Canseco JA, Karamian BA, Patel PD, et al. PEEK versus titanium static interbody cages: a comparison of 1-year clinical and radiographic outcomes for 1-level TLIFs. Clin Spine Surg. 2021 Oct 1;34(8):E483–E493.
  • Villavicencio AT, Nelson EL, Rajpal S, et al. Prospective, randomized, blinded clinical trial comparing PEEK and allograft spacers in patients undergoing anterior cervical discectomy and fusion surgeries. Spine (Phila Pa 1976). 2022 Aug 1;47(15):1043–1054.
  • Arts MP, Wolfs JFC, Corbin TP. Porous silicon nitride spacers versus PEEK cages for anterior cervical discectomy and fusion: clinical and radiological results of a single-blinded randomized controlled trial. Eur Spine J. 2017 Sep;26(9):2372–2379.
  • Moo IH, Kam CJW, Lai MWS, et al. A comparison of contiguous two-level anterior cervical discectomy and fusion using a structural allograft versus a Polyetheretherketone (PEEK) cage: the results of a three-year follow-up. BMC Musculoskelet Disord. 2020 May 28;21(1):331.
  • Buyuk AF, Onyekwelu I, Gaffney CJ, et al. Symptomatic pseudarthrosis requiring revision surgery after 1- or 2-level ACDF with plating: peek versus allograft. J Spine Surg. 2020 Dec;6(4):670–680.
  • Wang M, Chou D, Chang CC, et al. Anterior cervical discectomy and fusion performed using structural allograft or polyetheretherketone: pseudarthrosis and revision surgery rates with minimum 2-year follow-up. J Neurosurg Spine. 2019 Dec;13:1–8.
  • Yson SC, Sembrano JN, Santos ER. Comparison of allograft and polyetheretherketone (PEEK) cage subsidence rates in anterior cervical discectomy and fusion (ACDF). J Clin Neurosci. 2017 Apr;38:118–121.
  • Ryu WHA, Richards D, Kerolus MG, et al. Nonunion rates after anterior cervical discectomy and fusion: comparison of polyetheretherketone vs structural allograft implants. Neurosurgery. 2021 Jun 15;89(1):94–101.
  • Hacker RJ, Cauthen JC, Gilbert TJ, et al. A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine (Phila Pa 1976). 2000 Oct 15;25(20):2646–2654. discussion 2655.
  • Pflugmacher R, Schleicher P, Gumnior S, et al. Biomechanical comparison of bioabsorbable cervical spine interbody fusion cages. Spine (Phila Pa 1976). 2004 Aug 15;29(16):1717–1722.
  • Fountas KN, Kapsalaki EZ, Nikolakakos LG, et al. Anterior cervical discectomy and fusion associated complications. Spine (Phila Pa 1976). 2007 Oct 1;32(21):2310–2317.
  • Tortolani PJ, Cunningham BW, Vigna F, et al. A comparison of retraction pressure during anterior cervical plate surgery and cervical disc replacement: a cadaveric study. J Spinal Disord Tech. 2006 Jul;19(5):312–317.
  • He S, Zhou Z, Shao X, et al. Comparing the bridge-type zero-profile anchored spacer (ROI-C) interbody fusion cage system and Anterior Cervical Discectomy and Fusion (ACDF) with plating and cage system in cervical spondylotic myelopathy. Orthop Surg. 2022 Jun;14(6):1100–1108.
  • Scholz M, Schnake KJ, Pingel A, et al. A new zero-profile implant for stand-alone anterior cervical interbody fusion. Clin Orthop Relat Res. 2011 Mar;469(3):666–673.
  • Xiao S, Liang Z, Wei W, et al. Zero-profile anchored cage reduces risk of postoperative dysphagia compared with cage with plate fixation after anterior cervical discectomy and fusion. Eur Spine J. 2017 Apr;26(4):975–984.
  • Barbagallo GM, Romano D, Certo F, et al. Zero-P: a new zero-profile cage-plate device for single and multilevel ACDF. A single institution series with four years maximum follow-up and review of the literature on zero-profile devices. Eur Spine J. 2013 Nov;22(Suppl 6):S868–78.
  • He S, Zhou Z, Lv N, et al. Comparison of clinical outcomes following anterior cervical discectomy and fusion with zero-profile anchored spacer-ROI-C-fixation and combined intervertebral cage and anterior cervical discectomy and fusion: a retrospective study from a single center. Med Sci Monit. 2021 Aug 15;27:e931050.
  • Jin ZY, Teng Y, Wang HZ, et al. Comparative analysis of cage subsidence in anterior cervical decompression and fusion: zero profile anchored spacer (ROI-C) vs. conventional cage and plate construct. Front Surg. 2021 Oct 27;8:736680.
  • Shin JJ. Comparison of adjacent segment degeneration, cervical alignment, and clinical outcomes after one- and multilevel anterior cervical discectomy and fusion. Neurospine. 2019 Sep;16(3):589–600.
  • Wo J, Lv Z, Wang J, et al. Biomechanical analysis of cervical artificial disc replacement using cervical subtotal discectomy prosthesis. Front Bioeng Biotechnol. 2021 Jul 14;9:680769.
  • Di Martino A, Papalia R, Albo E, et al. Cervical spine alignment in disc arthroplasty: should we change our perspective? Eur Spine J. 2015 Nov;24(Suppl 7):810–825.
  • Kontakis M, Marques C, Löfgren H, et al. Artificial disc replacement and adjacent-segment pathology: 10-year outcomes of a randomized trial. J Neurosurg Spine. 2021 Dec;17:1–9.
  • Li Z, Wu H, Chu J, et al. Motion analysis of dynamic cervical implant stabilization versus anterior discectomy and fusion: a retrospective analysis of 70 cases. Eur Spine J. 2018 Nov;27(11):2772–2780.
  • Yang SH, Xiao FR, Lai DM, et al. A dynamic interbody cage improves bone formation in anterior cervical surgery: a porcine biomechanical study. Clin Orthop Relat Res. 2021 Nov 1;479(11):2547–2558.
  • Purushothaman Y, Yoganandan N, Jebaseelan D, et al. External and internal responses of cervical disc arthroplasty and anterior cervical discectomy and fusion: a finite element modeling study. J Mech Behav Biomed Mater. 2020 Jun;106:103735.
  • Mobbs RJ, Phan K, Malham G, et al. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015 Dec;1(1):2–18.
  • Fokter SK. Update review and clinical presentation on chronic low back pain treated by AxiaLIF. Eur J Orthop Surg Traumatol. 2011;21:39–42.
  • Kienle A, Krieger A, Willems K, et al. Resistance of coated polyetheretherketone lumbar interbody fusion cages against abrasion under simulated impaction into the disc space. J Appl Biomater Funct Mater. 2019 Apr-Jun;17(2):2280800018782854.
  • Ohiorhenuan IE, Walker CT, Zhou JJ, et al. Predictors of subsidence after lateral lumbar interbody fusion. J Neurosurg Spine. 2022 Mar;4:1–5.
  • Xu DS, Walker CT, Godzik J, et al. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Ann Transl Med. 2018 Mar;6(6):104.
  • Cannestra AF, Peterson MD, Parker SR, et al. MIS expandable interbody spacers: a literature review and biomechanical comparison of an expandable MIS TLIF With Conventional TLIF and ALIF. Spine (Phila Pa 1976). 2016 Apr;41(Suppl 8):S44–9.
  • Keorochana G, Setrkraising K, Woratanarat P, et al. Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Neurosurg Rev. 2018 Jul;41(3):755–770.
  • Joseph JR, Smith BW, La Marca F, et al. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015 Oct;39(4):E4.
  • Goldstein CL, Macwan K, Sundararajan K, et al. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine. 2016 Mar;24(3):416–427.
  • Calvachi-Prieto P, McAvoy MB, Cerecedo-Lopez CD, et al. Expandable versus static cages in minimally invasive lumbar interbody fusion: a systematic review and meta-analysis. World Neurosurg. 2021 Jul;151:e607–e614.
  • Chang CC, Chou D, Pennicooke B, et al. Long-term radiographic outcomes of expandable versus static cages in transforaminal lumbar interbody fusion. J Neurosurg Spine. 2020 Nov;13:1–10.
  • Massie LW, Zakaria HM, Schultz LR, et al. Assessment of radiographic and clinical outcomes of an articulating expandable interbody cage in minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis. Neurosurg Focus. 2018 Jan;44(1):E8.
  • Armocida D, Pesce A, Cimatti M, et al. Minimally invasive transforaminal lumbar interbody fusion using expandable cages: increased risk of late postoperative subsidence without a real improvement of perioperative outcomes: a clinical monocentric study. World Neurosurg. 2021 Dec;156:e57–e63.
  • Kim SK, Elbashier OM, Lee SC, et al. Can posterior stand-alone expandable cages safely restore lumbar lordosis? A minimum 5-year follow-up study. J Orthop Surg Res. 2020 Sep 29;15(1):442.
  • Zhang J, Pan A, Zhou L, et al. Comparison of unilateral pedicle screw fixation and interbody fusion with PEEK cage vs. standalone expandable fusion cage for the treatment of unilateral lumbar disc herniation. Arch Med Sci. 2018 Oct;14(6):1432–1438.
  • Stickley C, Philipp T, Wang E, et al. Expandable cages increase the risk of intraoperative subsidence but do not improve perioperative outcomes in single level transforaminal lumbar interbody fusion. Spine J. 2021 Jan;21(1):37–44.
  • Xie T, Pu L, Zhao L, et al. Influence of coronal-morphology of endplate and intervertebral space to cage subsidence and fusion following oblique lumbar interbody fusion. BMC Musculoskelet Disord. 2022 Jul 4;23(1):633.
  • Silber JS, Anderson DG, Daffner SD, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003 Jan 15;28(2):134–139.
  • Schnee CL, Freese A, Weil RJ, et al. Analysis of harvest morbidity and radiographic outcome using autograft for anterior cervical fusion. Spine (Phila Pa 1976). 1997 Oct 1;22(19):2222–2227.
  • Landriel FA, Hem S, Goldschmidt E, et al. Polyetheretherketone interbody cages versus autogenous iliac crest bone grafts with anterior fixation for cervical disc disease. J Spinal Disord Tech. 2013 Apr;26(2):61–67.
  • Shao MH, Zhang F, Yin J, et al. Titanium cages versus autogenous iliac crest bone grafts in anterior cervical discectomy and fusion treatment of patients with cervical degenerative diseases: a systematic review and meta-analysis. Curr Med Res Opin. 2017 May;33(5):803–811.
  • Liu Y, Rath B, Tingart M, et al. Role of implants surface modification in osseointegration: a systematic review. J Biomed Mater Res A. 2020 Mar;108(3):470–484.
  • Chen Y, Wang X, Lu X, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013 Jul;22(7):1539–1546.
  • Seaman S, Kerezoudis P, Bydon M, et al. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 2017 Oct;44:23–29.
  • Patel DV, Yoo JS, Karmarkar SS, et al. Interbody options in lumbar fusion. J Spine Surg. 2019 Jun;5(Suppl 1):S19–S24.
  • Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007 Nov;28(32):4845–4869.
  • Yan C, Hao L, Hussein A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 2015 Nov;51:61–73.
  • Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014 Mar 28;15(4):5426–5445.
  • Ahmed AF, Al Dosari MAA, Al Kuwari A, et al. The outcomes of stand alone polyetheretherketone cages in anterior cervical discectomy and fusion. Int Orthop. 2021 Jan;45(1):173–180.
  • Noordhoek I, Koning MT, Jacobs WCH, et al. Incidence and clinical relevance of cage subsidence in anterior cervical discectomy and fusion: a systematic review. Acta Neurochir (Wien). 2018 Apr;160(4):873–880.
  • Makino T, Takenaka S, Sakai Y, et al. Comparison of Short-term radiographical and clinical outcomes after posterior lumbar interbody fusion with a 3d porous titanium alloy cage and a titanium-coated PEEK cage. Global Spine J. 2022 Jun;12(5):931–939.
  • Li P, Jiang W, Yan J, et al. A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res A. 2019 Jul;107(7):1386–1392.
  • Olivares-Navarrete R, Hyzy SL, Slosar PJ, et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine (Phila Pa 1976). 2015 Mar 15;40(6):399–404.
  • Kashii M, Kitaguchi K, Makino T, et al. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci. 2020 Jul;25(4):565–570.
  • Hasegawa T, Ushirozako H, Shigeto E, et al. The titanium-coated PEEK cage maintains better bone fusion with the endplate than the PEEK cage 6 months after PLIF surgery: a multicenter, prospective, randomized study. Spine (Phila Pa 1976). 2020 Aug 1;45(15):E892–E902.
  • Sakaura H, Ikegami D, Fujimori T, et al. Surgical outcomes after posterior lumbar interbody fusion using traditional trajectory screw fixation or cortical bone trajectory screw fixation: a comparative study between the polyetheretherketone cage and the same shape titanium-coated polyetheretherketone cage. Clin Neurol Neurosurg. 2021 Oct;209:106945.
  • Schnake KJ, Fleiter N, Hoffmann C, et al. PLIF surgery with titanium-coated PEEK or uncoated PEEK cages: a prospective randomised clinical and radiological study. Eur Spine J. 2021 Jan;30(1):114–121.
  • Sakaura H, Ikegami D, Fujimori T, et al. Early fusion status after posterior lumbar interbody fusion with cortical bone trajectory screw fixation or traditional trajectory screw fixation: a comparison between the titanium-coated polyetheretherketone cage and the same shape polyetheretherketone cage. Clin Spine Surg. 2022 Feb 1;35(1):E47–E52.
  • Zhu C, He M, Mao L, et al. Titanium-interlayer mediated hydroxyapatite coating on polyetheretherketone: a prospective study in patients with single-level cervical degenerative disc disease. J Transl Med. 2021 Jan 6;19(1):14.
  • Qin J, Yang D, Maher S, et al. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J Mater Chem B. 2018 May 21;6(19):3136–3144.
  • Yuan B, Cheng Q, Zhao R, et al. Comparison of osteointegration property between PEKK and PEEK: effects of surface structure and chemistry. Biomaterials. 2018 Jul;170:116–126.
  • Frankenberger T, Graw CL, Engel N, et al. Sustainable surface modification of polyetheretherketone (PEEK) implants by hydroxyapatite/silica coating-an in vivo animal study. Materials (Basel). 2021 Aug 16;14(16):4589.
  • Yu X, Ibrahim M, Liu Z, et al. Biofunctional Mg coating on PEEK for improving bioactivity. Bioact Mater. 2018 Feb 13;3(2):139–143.
  • Xu X, Li Y, Wang L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials. 2019 Aug;212:98–114.
  • Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci. 2011 Dec;41(6):263–272.
  • Apaza-Bedoya K, Tarce M, Benfatti CAM, et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: a scoping review. J Periodontal Res. 2017 Dec;52(6):946–954.
  • Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine (Phila Pa 1976). 2002 Mar 15;27(6):567–575.
  • Assad M, Jarzem P, Leroux MA, et al. Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res B Appl Biomater. 2003 Feb 15;64(2):107–120.
  • Ng SL, Das S, Ting YP, et al. Benefits and biosafety of use of 3D-printing technology for titanium biomedical implants: a pilot study in the rabbit model. Int J Mol Sci. 2021 Aug 6;22(16):8480.
  • Alan N, Vodovotz L, Muthiah N, et al. Subsidence after lateral lumbar interbody fusion using a 3D-printed porous titanium interbody cage: single-institution case series. J Neurosurg Spine. 2022 May 20;37(5):663–669.
  • Fan H, Deng S, Tang W, et al. Highly porous 3D printed tantalum scaffolds have better biomechanical and microstructural properties than titanium scaffolds. Biomed Res Int. 2021 Sep 28;2021:2899043.
  • Hanc M, Fokter SK, Vogrin M, et al. Porous tantalum in spinal surgery: an overview. Eur J Orthop Surg Traumatol. 2016 Jan;26(1):1–7.
  • Piglionico S, Bousquet J, Fatima N, et al. Titanium implants: enhanced mineralized matrix formation after stem cells proliferation and differentiation. J Clin Med. 2020 Nov 13;9(11):3657.
  • Patel MS, McCormick JR, Ghasem A, et al. Tantalum: the next biomaterial in spine surgery? J Spine Surg. 2020 Mar;6(1):72–86.
  • Lu M, Xu S, Lei ZX, et al. Application of a novel porous tantalum implant in rabbit anterior lumbar spine fusion model: in vitro and in vivo experiments. Chin Med J (Engl). 2019 Jan 5;132(1):51–62.
  • Guo Y, Wu J, Xie K, et al. Study of bone regeneration and osteointegration effect of a novel selective laser-melted titanium-tantalum-niobium-zirconium alloy scaffold. ACS Biomater Sci Eng. 2019 Dec 9;5(12):6463–6473.
  • Sasaki M, Umegaki M, Fukunaga T, et al. Vertebral endplate cyst formation in relation to properties of interbody cages. Neurospine. 2021 Mar;18(1):170–176.
  • Zhou Z, Wei F, Huang S, et al. In vivo magnetic resonance imaging evaluation of porous tantalum interbody fusion devices in a porcine spinal arthrodesis model. Spine (Phila Pa 1976). 2015 Oct 1;40(19):1471–1478.
  • Plantz MA, Minardi S, Lyons JG, et al. Osteoinductivity and biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model. Acta Biomater. 2021. Jun 127: 146–158•• A promising material for intervertebral fusion is proposed
  • Roohani-Esfahani SI, Dunstan CR, Li JJ, et al. Unique microstructural design of ceramic scaffolds for bone regeneration under load. Acta Biomater. 2013 Jun;9(6):7014–7024.
  • Newsom ET, Sadeghpour A, Entezari A, et al. Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submission: a Good Laboratory Practice sheep study. Acta Biomater. 2022. Jan 19;S1742–7061(22):00045–9.•• Study on cervical interbody fusion cage of bioceramic in large animals
  • Song Y, Wu H, Gao Y, et al. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16058–16075.
  • Daentzer D, Willbold E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model. Spine (Phila Pa 1976). 2014 Sep 15;39(20):E1220–7.
  • Guo X, Xu H, Zhang F, et al. Bioabsorbable high-purity magnesium interbody cage: degradation, interbody fusion, and biocompatibility from a goat cervical spine model. Ann Transl Med. 2020 Sep;8(17):1054.
  • Volpe RH, Mistry D, Patel VV, et al. Dynamically crystalizing liquid-crystal elastomers for an expandable endplate-conforming interbody fusion cage. Adv Healthc Mater. 2020 Jan;9(1):e1901136.
  • Yang M, Xiang D, Chen Y, et al. An artificial PVA-BC composite that mimics the biomechanical properties and structure of a natural intervertebral disc. Materials (Basel). 2022 Feb 16;15(4):1481.
  • Verma R, Virk S, Qureshi S. Interbody fusions in the lumbar spine: a review. HSS J. 2020 Jul;16(2):162–167.
  • Huang G, Pan ST, Qiu JX. The clinical application of porous tantalum and its new development for bone tissue engineering. Materials (Basel). 2021 May 18;14(10):2647.
  • Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010 Apr;3(3):249–259.
  • Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:690–701.
  • Wang H, Su K, Su L, et al. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109908.
  • Ma L, Wang X, Zhao N, et al. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42146–42,154.
  • Han Q, Wang C, Chen H, et al. Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng. 2019 Nov 11;5(11):5798–5824.
  • Chen Z, Yan X, Yin S, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110289.
  • Chen YN, Chang CW. Computational comparison of three different cage porosities in posterior lumbar interbody fusion with porous cage. Comput Biol Med. 2021 Dec;139:105036.
  • Kelly CN, Wang T, Crowley J, et al. High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Biomaterials. 2021. Dec 279: 121206• Mechanical studies on large animals and porous structures
  • Wu MH, Lee MH, Wu C, et al. In vitro and in vivo comparison of bone growth characteristics in additive-manufactured porous titanium, nonporous titanium, and porous tantalum interbody cages. Materials (Basel). 2022 May 20;15(10):3670.
  • Pan CT, Lin CH, Huang YK, et al. Design of customize interbody fusion cages of Ti64ELI with gradient porosity by selective laser melting process. Micromachines (Basel). 2021 Mar 15;12(3):307.
  • Afshar M, Pourkamali Anaraki A, Montazerian H. Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces. Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:254–267.
  • Hunt JP, Begley MR, Block JE. Truss implant technology™ for interbody fusion in spinal degenerative disorders: profile of advanced structural design, mechanobiologic and performance characteristics. Expert Rev Med Devices. 2021 Aug;18(8):707–715.• A new porous structure design, taking into account the mechanics.
  • Torstrick FB, Lin ASP, Safranski DL, et al. Effects of surface topography and chemistry on Polyether-Ether-Ketone (PEEK) and titanium osseointegration. Spine (Phila Pa 1976). 2020 Apr 15;45(8):E417–E424.
  • Wang G, Shen L, Zhao J, et al. Design and compressive behavior of controllable irregular porous scaffolds: based on voronoi-tessellation and for additive manufacturing. ACS Biomater Sci Eng. 2018 Feb 12;4(2):719–727.
  • Deering J, Dowling KI, DiCecco LA, et al. Selective Voronoi tessellation as a method to design anisotropic and biomimetic implants. J Mech Behav Biomed Mater. 2021 Apr;116:104361.
  • Burnard JL, Parr WCH, Choy WJ, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J. 2020 Jun;29(6):1248–1260.
  • Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976). 2016 Jan;41(1):E50–4.
  • Yin X, Jiang L, Yang J, et al. Application of biodegradable 3D-printed cage for cervical diseases via anterior cervical discectomy and fusion (ACDF): an in vitro biomechanical study. Biotechnol Lett. 2017 Sep;39(9):1433–1439.
  • Velásquez-García LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021 Jul 13;23:307–338. • The application of metal 3D printing technology is introduced in detail
  • Zhang W, Sun C, Zhu J, et al. 3D printed porous titanium cages filled with simvastatin hydrogel promotes bone ingrowth and spinal fusion in rhesus macaques. Biomater Sci. 2020 Aug 7;8(15):4147–4156.•• Cervical vertebra experiments in large animals and primates.
  • Kodama J, Chen H, Zhou T, et al. Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space. Spine J. 2021 Jul;21(7):1217–1228.
  • Bassous NJ, Jones CL, Webster TJ. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: predictive equations and experiments. Acta Biomater. 2019 Sep 15;96:662–673.
  • Fokter S, Rečnik G. The use of porous tantalum cages in the treatment of unremitting spondylodiscitis: a case report. ZdravVestn. 2018;87(1–2):41–48.
  • Fialho L, Grenho L, Fernandes MH, et al. Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: a new generation of materials for dental implants. Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111761.
  • Hua L, Qian H, Lei T, et al. 3D-printed porous tantalum coated with antitubercular drugs achieving antibacterial properties and good biocompatibility. Macromol Biosci. 2022 Jan;22(1):e2100338.
  • Hua L, Lei T, Qian H, et al. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv. 2021 May;18(5):625–634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.