97
Views
0
CrossRef citations to date
0
Altmetric
Review

A review on the treatment of intimal hyperplasia with perivascular medical devices: role of mechanical factors and drug release kinetics

, &
Pages 805-819 | Received 01 Apr 2023, Accepted 02 Aug 2023, Published online: 10 Aug 2023

References

  • Jim J, Owens PL, Sanchez LA, et al. Population-based analysis of inpatient vascular procedures and predicting future workload and implications for training. J Vasc Surg. 2012;55:1394–1400.e1. doi: 10.1016/j.jvs.2011.11.061
  • Goodney PP, Beck AW, Nagle J, et al. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60. doi: 10.1016/j.jvs.2009.01.035
  • Htay T, Liu MW. Drug-eluting stent: a review and update. Vasc Health Risk Manag. 2005;1(4):263–276. doi: 10.2147/vhrm.2005.1.4.263
  • Gaudino M, Taggart D, Suma H, et al. The choice of conduits in coronary artery bypass surgery. J Am Coll Cardiol. 2015;66(15):1729–1737. doi: 10.1016/j.jacc.2015.08.395
  • Fitzgibbon GM, Kafka HP, Leach AJ, et al. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28(3):616–626. doi: 10.1016/0735-1097(96)00206-9
  • Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a department of veterans affairs cooperative study. J Am Coll Cardiol. 2004;44(11):2149–2156. doi: 10.1016/j.jacc.2004.08.064
  • Sur S, Sugimoto JT, Agrawal DK. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can J Physiol Pharmacol. 2014;92:531–545. doi: 10.1139/cjpp-2013-0445
  • Filova E, Parizek M, Olsovska J, et al. Perivascular sirolimus-delivery system. Int J Pharm. 2011;404:94–101. doi: 10.1016/j.ijpharm.2010.11.005
  • Lee KJ, Park SH, Lee JY, et al. Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J Control Release. 2014;192:174–181. doi: 10.1016/j.jconrel.2014.07.007
  • Jung MJ, Kwon JS, Park NK, et al. Perivascular delivery of rapamycin in pluronic gel inhibits neointimal hyperplasia in a rat carotid artery injury model, and the complementary role of carotid arteriography. Korean Circ J. 2008;38(2):80–86. doi: 10.4070/kcj.2008.38.2.80
  • Clowes AW. Chapter 17 Intimal hyperplasia and graft failure. Cardiovasc Pathol. 1993;2(3):179–186. doi: 10.1016/1054-8807(93)90058-A
  • Swedberg SH, Brown BG, Sigley R, et al. Intimal fibromuscular hyperplasia at the venous anastomosis of PTFE grafts in hemodialysis patients. Clinical, immunocytochemical, light and electron microscopic assessment. Circulation [Internet]. 1989;80:1726–1736. doi: 10.1161/01.CIR.80.6.1726
  • Motwani J, Topol E. Aortocoronary saphenous vein graft disease. Circulation. 1998;97:916–931. doi: 10.1161/01.CIR.97.9.916
  • Wan S, George SJ, Berry C, et al. Vein graft failure: current clinical practice and potential for gene therapeutics. Gene Ther. 2012;19:630–636. doi: 10.1038/gt.2012.29
  • Jennette JC, Stone JR. Chapter 11 - diseases of medium-sized and small vessels. In: Willis M, Homeister J, JRBT-C S of CD M, editors. Cell Mol Pathobiol Cardiovasc Dis. San Diego: Academic Press; 2014. p. 197–219. Available from: http://www.sciencedirect.com/science/article/pii/B9780124052062000119
  • Zubilewicz T, Wronski J, Bourriez A, et al. Injury in vascular surgery—the intimal hyperplastic response. Med Sci Monit. 2001;7:316–324.
  • Xiang DZ, Verbeken EK, van Lommel ATL, et al. Intimal hyperplasia after long-term venous catheterization. Eur Surg Res. 2000;32(4):236–245. doi: 10.1159/000008770
  • Roux E, Bougaran P, Dufourcq P, et al. Fluid shear stress sensing by the endothelial layer. Front Physiol. 2020;11:861. doi: 10.3389/fphys.2020.00861
  • Chanda J, Brichkov I, Canver CC. Prevention of radial artery graft vasospasm after coronary bypass. Ann Thorac Surg. 2000;70(6):2070–2074. doi: 10.1016/S0003-4975(00)02001-4
  • Sakaguchi T, Asai T, Belov D, et al. Influence of ischemic injury on vein graft remodeling: role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. J Thorac Cardiovasc Surg. 2005;129(1):129–137. doi: 10.1016/j.jtcvs.2004.04.014
  • Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10:53. doi: 10.1038/nrm2596
  • Chervu A, Moore WS. An overview of intimal hyperplasia. Surg Gynecol Obstet. 1990;171:433–447.
  • Thatte HS, Khuri SF. The coronary artery bypass conduit: I. Intraoperative endothelial injury and its implication on graft patency. Ann Thorac Surg. 2001;72:S2245–S2252. doi: 10.1016/S0003-4975(01)03272-6
  • Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs Off. 2003;6:227–235. doi: 10.1007/s10047-003-0232-x
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801. doi: 10.1152/physrev.00041.2003
  • Ait-Oufella H, Taleb S, Mallat Z, et al. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:969–979. doi: 10.1161/ATVBAHA.110.207415
  • Ferns GAA, Raines EW, Sprugel KH, et al. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science. 1991;253:1129–1132. doi: 10.1126/science.1653454
  • Kimura TE, Duggirala A, Smith MC, et al. The hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. J Mol Cell Cardiol. 2016;90:1–10. doi: 10.1016/j.yjmcc.2015.11.024
  • Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 2017;45:72–82. Available from. https://www.sciencedirect.com/science/article/pii/S0955067417300303
  • Proud C. Chapter 8 - mTORC1 and cell cycle control. Enzym. 2010;129–146. Academic Press Available from https://www.sciencedirect.com/science/article/pii/S1874604710270087
  • Kastrati A, Dibra A, Eberle S, et al. Sirolimus-eluting stents vs paclitaxel-eluting stents in patients with coronary artery diseasemeta-analysis of randomized trials. JAMA. 2005;294:819–825. doi: 10.1001/jama.294.7.819
  • Ojha M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J Biomech. 1993;26(12):1377–1388. doi: 10.1016/0021-9290(93)90089-W
  • Camasão DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio. 2021;10:100106. doi: 10.1016/j.mtbio.2021.100106
  • Ghista DN, Kabinejadian F. Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review. Biomed Eng Online. 2013;12(1):129. doi: 10.1186/1475-925X-12-129
  • Owens CD, Wake N, Jacot JG, et al. Early biomechanical changes in lower extremity vein grafts—distinct temporal phases of remodeling and wall stiffness. J Vasc Surg. 2006;44(4):740–746. doi: 10.1016/j.jvs.2006.06.005
  • Ward AO, Caputo M, Angelini GD, et al. Activation and inflammation of the venous endothelium in vein graft disease. Atherosclerosis. 2017;265:266–274. doi: 10.1016/j.atherosclerosis.2017.08.023
  • Teng Z, Ji G, Chu H, et al. Does PGA external stenting reduce compliance mismatch in venous grafts? Biomed Eng Online. 2007;6(1):12. doi: 10.1186/1475-925X-6-12
  • Ben-Gal Y, Taggart DP, Williams MR, et al. Expandable external support device to improve saphenous vein graft patency after CABG. J Cardiothorac Surg. 2013;8(1):122. doi: 10.1186/1749-8090-8-122
  • Mawhinney JA, Mounsey CA, Taggart DP. The potential role of external venous supports in coronary artery bypass graft surgery. Eur J Cardio-Thoracic Surg Off J Eur Assoc Cardio-Thoracic Surg. 2018;53:1127–1134. doi: 10.1093/ejcts/ezx432
  • Goldstein DJ. Device profile of the VEST for external support of SVG Coronary artery bypass grafting: historical development, current status, and future directions. Expert Rev Med Devices. 2021;18:921–931. doi: 10.1080/17434440.2021.1960504
  • Taggart DP, Gavrilov Y, Krasopoulos G, et al. External stenting and disease progression in saphenous vein grafts two years after coronary artery bypass grafting: A multicenter randomized trial. J Thorac Cardiovasc Surg. 2022;164(5):1532–1541.e2. doi: 10.1016/j.jtcvs.2021.03.120
  • Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905. doi: 10.3390/molecules26195905
  • Mylonaki I, Allémann É, Saucy F, et al. Perivascular medical devices and drug delivery systems: making the right choices. Biomaterials. 2017;128:56–68. doi: 10.1016/j.biomaterials.2017.02.028
  • Kohler TR, Toleikis PM, Gravett DM, et al. Inhibition of neointimal hyperplasia in a sheep model of dialysis access failure with the bioabsorbable vascular wrap paclitaxel-eluting mesh. J Vasc Surg. 2007;45:1029–1038.e3. doi: 10.1016/j.jvs.2007.01.057
  • Chaudhary MA, Guo LW, Shi X, et al. Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery. J Control Release. 2016;233:174–180. doi: 10.1016/j.jconrel.2016.05.002
  • Wiedemann D, Kocher A, Bonaros N, et al. Perivascular administration of drugs and genes as a means of reducing vein graft failure. Curr Opin Pharmacol. 2012;12:203–216. doi: 10.1016/j.coph.2012.02.012
  • Peppas NA, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46. Available from: https://www.sciencedirect.com/science/article/pii/S0939641100000904
  • Arakaki K, Kitamura N, Fujiki H, et al. Artificial cartilage made from a novel double-network hydrogel: In vivo effects on the normal cartilage and ex vivo evaluation of the friction property. J Biomed Mater Res Part A. 2010;93A:1160–1168. doi: 10.1002/jbm.a.32613
  • Li J, Illeperuma WRK, Suo Z, et al. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 2014;3:520–523. doi: 10.1021/mz5002355
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf). 2008;49(8):1993–2007. doi: 10.1016/j.polymer.2008.01.027
  • McLennan G, Johnson MS, Stookey KR, et al. Kinetics of release of heparin from alginate hydrogel. J Vasc Interv Radiol. 2000;11(8):1087–1094. doi: 10.1016/S1051-0443(07)61344-X
  • Shi X, Chen G, Guo LW, et al. Periadventitial application of rapamycin-loaded nanoparticles produces sustained inhibition of vascular restenosis. Plos One. 2014;9(2):e89227. doi: 10.1371/journal.pone.0089227
  • Wang LL, Burdick JA. Engineered hydrogels for local and sustained delivery of RNA-Interference therapies. Adv Healthc Mater. 2017;6:1601041. doi: 10.1002/adhm.201601041
  • Yu X, Takayama T, Goel SA, et al. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. J Control Release. 2014;191:47–53. doi: 10.1016/j.jconrel.2014.05.017
  • Ciccone WJII, Motz C, Bentley C, et al. Bioabsorbable implants in orthopaedics: new developments and clinical applications. JAAOS - J Am Acad Orthop Surg. 2001;9. Available from https://journals.lww.com/jaaos/Fulltext/2001/09000/Bioabsorbable_Implants_in_Orthopaedics__New.1.aspx
  • Kelly B, Melhem M, Zhang J, et al. Perivascular paclitaxel wraps block arteriovenous graft stenosis in a pig model. Nephrol Dialysis Transplantation. 2018;21(9):2425–2431. doi: 10.1093/ndt/gfl250
  • Zhang Y, Fang Q, Niu K, et al. Time-dependently slow-released multiple-drug eluting external sheath for efficient long-term inhibition of saphenous vein graft failure. J Control Release. 2019;293:172–182. doi: 10.1016/j.jconrel.2018.12.001
  • Yalcin Enis I, Gok Sadikoglu T. Design parameters for electrospun biodegradable vascular grafts. J Ind Text. 2016;47:2205–2227. doi: 10.1177/1528083716654470
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037. doi: 10.1016/S1734-1140(12)70901-5
  • Pires NMM, Van Der Hoeven BL, De Vries MR, et al. Local perivascular delivery of anti-restenotic agents from a drug-eluting poly(ε-caprolactone) stent cuff. Biomaterials. 2005;26:5386–5394. doi: 10.1016/j.biomaterials.2005.01.063
  • Lincoff AM, Furst JG, Ellis SG, et al. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol. 1997;29(4):808–816. doi: 10.1016/S0735-1097(96)00584-0
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;1–33. doi: 10.1186/s12951-018-0392-8
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102. Available from. http://www.sciencedirect.com/science/article/pii/S037851730500668X
  • Lovich MA, Brown L, Edelman ER. Drug clearance and arterial uptake after local perivascular delivery to the rat carotid artery. J Am Coll Cardiol. 1997;29:1645 LP–1650. doi: 10.1016/S0735-1097(97)00123-X
  • Ha DI, Lee SB, Chong MS, et al. Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol Res. 2006;14:87–93. doi: 10.1007/BF03219073
  • Reid B, Gibson M, Singh A, et al. PEG hydrogel degradation and the role of the surrounding tissue environment. J Tissue Eng Regen Med. 2015;9:315–318. doi: 10.1002/term.1688
  • Xue AS, Koshy JC, Weathers WM, et al. Local foreign-body reaction to commercial biodegradable implants: an in vivo animal study. Craniomaxillofac Trauma Reconstr. 2014;7:27–33. doi: 10.1055/s-0033-1364199
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–692. doi: 10.2217/nnm.16.5
  • Mout R, Moyano DF, Rana S, et al. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41:2539–2544. doi: 10.1039/C2CS15294K
  • Huo M, Chen Y, Shi J. Triggered-release drug delivery nanosystems for cancer therapy by intravenous injection: where are we now? Expert Opin Drug Deliv. 2016;13:1195–1198. doi: 10.1080/17425247.2016.1213241
  • Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J Control Release. 2020;327:316–349. doi: 10.1016/j.jconrel.2020.08.012
  • Singh P, Pandit S, Mokkapati VRSS, et al. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19(7):1979. doi: 10.3390/ijms19071979
  • Mohammadpour R, Dobrovolskaia MA, Cheney DL, et al. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev. 2019;144:112–132. doi: 10.1016/j.addr.2019.07.006
  • Edelman ER, Nathan A, Katada M, et al. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials. 2000;21(22):2279–2286. doi: 10.1016/S0142-9612(00)00154-X
  • Mylonaki I, Strano F, Deglise S, et al. Perivascular sustained release of atorvastatin from a hydrogel-microparticle delivery system decreases intimal hyperplasia. J Control Release. 2016;232:93–102. doi: 10.1016/j.jconrel.2016.04.023
  • Kelly B, Melhem M, Zhang J, et al. Perivascular paclitaxel wraps block arteriovenous graft stenosis in a pig model. Nephrol Dial Transplant. 2006;21(9):2425–2431. doi: 10.1093/ndt/gfl250
  • Pereira Camelo SR, Franceschi S, Perez E, et al. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm. 2016;42:985–997. doi: 10.3109/03639045.2015.1103746
  • Manallack DT, Yuriev E, Chalmers DK. The influence and manipulation of acid/base properties in drug discovery. Drug Discov Today Technol. 2018;27:41–47. doi: 10.1016/j.ddtec.2018.04.003
  • Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. Aaps J. 2012;14:244–251. doi: 10.1208/s12248-012-9337-6
  • Kim H, Burgess DJ. Effect of drug stability on the analysis of release data from controlled release microspheres. J Microencapsul. 2002;19:631–640. doi: 10.1080/02652040210140698
  • Kamath KR, Barry JJ, Miller KM. The taxus drug-eluting stent: a new paradigm in controlled drug delivery. Adv Drug Deliv Rev. 2006 [cited 2011 Jun 14];58:412–436. http://www.ncbi.nlm.nih.gov/pubmed/16647782
  • Jeong JC, Lee J, Cho K. Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. J Control Release. 2003;92(3):249–258. doi: 10.1016/S0168-3659(03)00367-5
  • Lappe S, Mulac D, Langer K. Polymeric nanoparticles – Influence of the glass transition temperature on drug release. Int J Pharm. 2017;517(1–2):338–347. doi: 10.1016/j.ijpharm.2016.12.025
  • Carbinatto FM, de Castro AD, Evangelista RC, et al. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9(1):27–34. doi: 10.1016/j.ajps.2013.12.002
  • Feng S, Nie L, Zou P, et al. Effects of drug and polymer molecular weight on drug release from PLGA-Mpeg microspheres. J Appl Polym Sci. 2015;132. doi: 10.1002/app.41431
  • Zhang Y, Shams T, Harker AH, et al. Effect of copolymer composition on particle morphology and release behavior in vitro using progesterone. Mater Des. 2018;159:57–67. doi: 10.1016/j.matdes.2018.08.024
  • Choi J, Jang BN, Park BJ, et al. Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid). Langmuir. 2014;30:10098–10106. doi: 10.1021/la500452h
  • Preem L, Vaarmets E, Meos A, et al. Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems. Int J Pharm. 2019;567:118450. doi: 10.1016/j.ijpharm.2019.118450
  • Engineer S, Shao ZJ, Khagani NA. Temperature/Humidity sensitivity of sustained‐release formulations containing kollidon® SR. Drug Dev Ind Pharm. 2004;30:1089–1094. doi: 10.1081/DDC-200040292
  • Asare-Addo K, Conway BR, Larhrib H, et al. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloids Surf B Biointerfaces. 2013;111:384–391. doi: 10.1016/j.colsurfb.2013.06.034
  • Shen J, Burgess DJ. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J Pharm Pharmacol. 2012;64:986–996. doi: 10.1111/j.2042-7158.2012.01482.x
  • Abouelmagd SA, Sun B, Chang AC, et al. Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right? Mol Pharm. 2015;12:997–1003. doi: 10.1021/mp500817h
  • King D, McCormick C, McGinty S. How does fluid flow influence drug release from drug filled implants? Pharm Res. 2022;39:25–40. doi: 10.1007/s11095-021-03127-4
  • Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2)328–343. doi: 10.1016/j.ijpharm.2008.09.004
  • Stewart SA, Domínguez-Robles J, Donnelly RF, et al. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12):1379. doi: 10.3390/polym10121379
  • Serra L, Doménech J, Peppas NA. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials. 2006;27:5440–5451. doi: 10.1016/j.biomaterials.2006.06.011
  • Bruschi MLBT-S to M the DR from PS, editor. 5 - Mathematical models of drug release. Woodhead Publishing; 2015. p. 63–86. Available from: http://www.sciencedirect.com/science/article/pii/B9780081000922000059
  • Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–1149. doi: 10.1002/jps.2600521210
  • Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36. doi: 10.1016/0168-3659(87)90034-4
  • Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–172. doi: 10.1016/0378-5173(89)90306-2
  • Alfrey T Jr., Gurnee EF, Lloyd WG. Diffusion in glassy polymers. J Polym Sci Part C Polym Symp. 1966;12:249–261. doi: 10.1002/polc.5070120119
  • Siepmann J, a G. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev. 2001;48:229–247. doi: 10.1016/S0169-409X(01)00116-8
  • Ferrero C, Massuelle D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. J Control Release. 2010;141:223–233. doi: 10.1016/j.jconrel.2009.09.011
  • Lao LL, Venkatraman SS, a PN. Modeling of drug release from biodegradable polymer blends. Eur J Pharm Biopharm. cited 2011 Aug 8 2008;70:796–803. http://www.ncbi.nlm.nih.gov/pubmed/18577449
  • Tzafriri AR, Groothuis A, Price GS, et al. Stent elution rate determines drug deposition and receptor-mediated effects. J Control Release. 2012;161(3):918–926. doi: 10.1016/j.jconrel.2012.05.039
  • Narasimhan B. Mathematical models describing polymer dissolution: consequences for drug delivery. Adv Drug Deliv Rev. 2001;48(2–3):195–210. doi: 10.1016/S0169-409X(01)00117-X
  • Narasimhan B, a PN. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier. J Pharm Sci. 1997;86:297–304.
  • Joshi A, Himmelstein KJ. Dynamics of controlled release from bioerodible matrices. J Control Release. 1991;15(2):95–104. doi: 10.1016/0168-3659(91)90067-N
  • Hopfenberg HB. Controlled release from erodible slabs, cylinders, and spheres. control release polym formul [Internet]. 1976 AME; 3–26. Available from 10.1021/bk-1976-0033.ch003
  • Katzhendler I, Hoffman A, Goldberger A, et al. Modeling of drug release from erodible tablets. J Pharm Sci. 1997;86(1):110–115. doi: 10.1021/js9600538

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.