268
Views
0
CrossRef citations to date
0
Altmetric
Review

Design trends in actuated lower-limb prosthetic systems: a narrative review

ORCID Icon, & ORCID Icon
Pages 1157-1172 | Received 11 Apr 2023, Accepted 02 Nov 2023, Published online: 15 Nov 2023

References

  • Zhang X, Liu Y, Zhang F, et al. On Design and Implementation of Neural-Machine Interface for Artificial Legs. IEEE Trans Ind Informatics. 2012;8:418–429. doi: 10.1109/TII.2011.2166770
  • Ziegler-Graham K, MacKenzie EJ, Ephraim PL, et al. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–429.
  • Manz S, Valette R, Damonte F, et al. A review of user needs to drive the development of lower limb prostheses. J Neuroeng Rehabil. 2022;19(1):119.
  • Hernigou P. Ambroise Paré IV: the early history of artificial limbs (from robotic to prostheses). Int Orthop. 2013;37:1195–1197. doi:10.1007/s00264-013-1884-7
  • Windrich M, Grimmer M, Christ O, et al. Active lower limb prosthetics: a systematic review of design issues and solutions. Biomed Eng Online. 2016;15(S3):140.
  • Genin JJ, Bastien GJ, Franck B, et al. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees. Eur J Appl Physiol. 2008;103(6):655–663.
  • Feng Y, Wang Q. Combining push-off power and nonlinear damping behaviors for a lightweight motor-driven transtibial prosthesis. IEEE/ASME Trans Mechatron. 2017;22(6):2512–2523. doi: 10.1109/TMECH.2017.2766205
  • Wu M, Haque MR, Shen X. Obtaining natural Sit-to-Stand motion with a biomimetic controller for powered knee prostheses. J Healthc Eng 2017. 2017;2017:1–6. doi: 10.1155/2017/3850351
  • Ottobock. Instructions for use (user)| 1B1-2 Meridium. Wien. [Accessed on 2023 Mar 27]. Available from: https://www.ottobock.com/en-us/product/1B1-2.
  • Ottobock. Instructions for use (user)| 1A1-2 Empower. Salt Lake City. [Accessed on 2023 Mar 11]. Available from: https://www.ottobock.com/en-us/product/1A1-2.
  • Össur. POWER KNEE PKA01 Instructions for use. Reykjavík. (2022) [Accessed on 2023 Jun 1]. Available from: https://media.ossur.com/ossur-dam/image/upload/pi-documents-global/Power_Knee_1441_001_4.pdf
  • Shepherd MK, Rouse EJ. The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness. IEEE Trans Neural Syst Rehabil Eng. 2017;25(12):2375–2386. doi: 10.1109/TNSRE.2017.2750113
  • Au SK, Weber J, Herr H. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Trans Robot. 2009;25(1):51–66. doi: 10.1109/TRO.2008.2008747
  • Azocar AF, Mooney LM, Duval JF, et al. Design and clinical implementation of an open-source bionic leg. Nat Biomed Eng. 2020;4:941–953. doi: 10.1038/s41551-020-00619-3
  • Flowers WC, Mann RW. An electrohydraulic knee-torque controller for a prosthesis simulator. J Biomech Eng. 1977;99(1):3–8. doi: 10.1115/1.3426266
  • Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng. 2011;58(1):144–151. doi: 10.1109/TBME.2010.2070840
  • Huang H, Zhang F, Hargrove LJ, et al. Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular–Mechanical Fusion. IEEE Trans Biomed Eng. 2011;58(10):2867–2875.
  • Wu S-K, Waycaster G, Shen X. Electromyography-based control of active above-knee prostheses. Control Eng Pract. 2011;19(8):875–882. doi: 10.1016/j.conengprac.2011.04.017
  • Chen B, Feng Y, Wang Q. Combining vibrotactile feedback with volitional myoelectric control for robotic transtibial prostheses. Front Neurorobot. 2016;10(8). doi: 10.3389/fnbot.2016.00008
  • Dietrich C, Nehrdich S, Seifert S, et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front Neurol. 2018;9:270. doi: 10.3389/fneur.2018.00270
  • Charkhkar H, Shell CE, Marasco PD, et al. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J Neural Eng. 2018;15(5):056002.
  • Asif M, Tiwana MI, Khan US, et al. Advancements, trends and future prospects of lower limb prosthesis. IEEE Access. 2021;9:85956–85977. doi: 10.1109/ACCESS.2021.3086807
  • Lathouwers E, Díaz MA, Maricot A, et al. Therapeutic benefits of lower limb prostheses: a systematic review. J Neuroeng Rehabil. 2023;20(4). doi: 10.1186/s12984-023-01128-5
  • Domínguez-Ruiz A, López-Caudana EO, Lugo-González E, et al. Low limb prostheses and complex human prosthetic interaction: a systematic literature review. Front Robot AI. 2023;10:1032748. doi: 10.3389/frobt.2023.1032748
  • Lara-Barrios CM, Blanco-Ortega A, Guzmán-Valdivia CH, et al. Literature review and current trends on transfemoral powered prosthetics. Adv Robot. 2018;32(2):51–62.
  • Farina D, Vujaklija I, Brånemark R, et al. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng. 2023;7(4):473–485.
  • Fosse S, Hartemann-Heurtier A, Jacqueminet S, et al. Incidence and characteristics of lower limb amputations in people with diabetes. Diabet Med. 2009;26(4):391–396.
  • Dillingham TR, Pezzin LE, MacKenzie EJ, et al. Use and satisfaction with prosthetic devices among persons with trauma-related amputations. Am J Phys Med Rehabil. 2001;80(8):563–571.
  • Meulenbelt HE, Geertzen JH, Jonkman MF, et al. Determinants of skin problems of the stump in lower-limb amputees. Arch Phys Med Rehabil. 2009;90(1):74–81.
  • Inman VT, Ralston H, Todd F. Human walking. Baltimore (USA MD): Williams & Wilkins; 1981.
  • Mueske NM, Õunpuu S, Ryan DD, et al. Impact of gait analysis on pathology identification and surgical recommendations in children with spina bifida. Gait Posture. 2019;67:128–132. doi: 10.1016/j.gaitpost.2018.10.003
  • Sasayama M, Murakami T. Design of a gait rehabilitation system: gait analysis and gait trajectory generation algorithm. 2013 IEEE Int Symp Ind Electron IEEE; Taipei, Taiwan; 2013. p. 1–6.
  • Zhang S, Guan X, Ye J, et al. Gait deviation correction method for gait rehabilitation with a lower limb exoskeleton Robot. IEEE Trans Med Robot Bionics. 2022;4(3):754–763.
  • Ingrosso S, Benedetti MG, Leardini A, et al. GAIT analysis in patients operated with a novel total ankle prosthesis. Gait Posture. 2009;30(2):132–137.
  • Park JH, Chun MH, Ahn JS, et al. Comparison of gait analysis between anterior and posterior ankle foot orthosis in hemiplegic patients. Am J Phys Med Rehabil. 2009;88(8):630–634.
  • Akhtaruzzaman M, Shafie AA, Khan MR. Gait analysis: systems, technologies, and importance. J Mech Med Biol. 2016;16(7):1630003. doi: 10.1142/S0219519416300039
  • Kanko RM, Laende EK, Strutzenberger G, et al. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J Biomech. 2021;122:110414. doi: 10.1016/j.jbiomech.2021.110414
  • Jakob V, Küderle A, Kluge F, et al. Validation of a sensor-based gait analysis system with a Gold-Standard motion capture system in patients with Parkinson’s disease. Sensors. 2021;21(22):7680.
  • Ziegler J, Reiter A, Gattringer H, et al. Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data. Med Eng Phys. 2020;84:193–202. doi: 10.1016/j.medengphy.2020.08.009
  • Pham H, Kawanishi M, Narikiyo T A LLE-HMM-based framework for recognizing human gait movement from EMG. 2015 IEEE Int Conf Robot Autom IEEE; Seattle, WA, USA; 2015. p. 2997–3002.
  • Wang J, Dai Y, Kang T, et al. Research on gait recognition based on lower limb EMG Signal. 2021 IEEE Int Conf Mechatronics Autom IEEE; Takamatsu, Japan; 2021. p. 212–217.
  • Tortora S, Tonin L, Chisari C, et al. Hybrid human-machine interface for gait decoding through bayesian fusion of EEG and EMG classifiers. Front Neurorobot. 2020;14:582728. doi: 10.3389/fnbot.2020.582728
  • Crowe A, Samson MM, Hoitsma MJ, et al. The influence of walking speed on parameters of gait symmetry determined from ground reaction forces. Hum Mov Sci. 1996;15:347–367. doi: 10.1016/0167-9457(96)00005-X
  • Takahashi T, Ishida K, Hirose D, et al. Vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females. J Rehabil Med. 2004;36(1):42–45.
  • Wafai L, Zayegh A, Woulfe J, et al. Identification of foot pathologies based on plantar pressure asymmetry. Sensors. 2015;15(8):20392–20408.
  • Song J, Zhu A, Tu Y, et al. Adaptive neural fuzzy reasoning method for recognizing human movement gait phase. Rob Auton Syst. 2022;153:104087. doi: 10.1016/j.robot.2022.104087
  • Vicon. VICON NEXUS USER GUIDE. Oxford (UK). (2021). [Accessed on 2023 Sep 1] Available from: https://docs.vicon.com/display/Nexus212/PDF+downloads+for+Vicon+Nexus
  • OptiTrack. MOTIVE V3.0. Corvallis (OR). (2023). [Accessed on 2023 Sep 1]. Available from: https://www.optitrack.com/software/motive/
  • Qualisys. Qualisys Track Manager. Gothenburg Sweden. (2023). [Accessed on 2023 Jul 6]. Available from: https://cdn-content.qualisys.com/2019/10/PI_Qualisys_Track_Manager.pdf
  • Shi B, Wei W. The inverse dynamic method and promoting its precision of calculation. J Nanjing Inst Phys Educ (Natural Sci. 2003;2:6–12.
  • Sartori M, Farina D, Lloyd DG. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J Biomech. 2014;47(15):3613–3621. doi: 10.1016/j.jbiomech.2014.10.009
  • Rasmussen J. The AnyBody modeling system. DHM and Posturography. In: Scataglini S, Paul G, editors. Cambridge, Massachusetts: Academic Press; 2019. p. 85–96.
  • Seth A, Hicks JL, Uchida TK, et al. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. In Schneidman D, editor. PLOS Comput Biol. 2018;14(7):e1006223.
  • Hahn A, Sreckovic I, Reiter S, et al. First results concerning the safety, walking, and satisfaction with an innovative, microprocessor-controlled four-axes prosthetic foot. Prosthetics Orthot Int. 2018;42(3):350–356.
  • Innovations F. Kinnex 2.0 Instructions for use. Irvine. [Accessed on 2023 Jun 1]. Available from: https://www.freedomkinnex.com/_files/ugd/61b543_71e80179c7584f4d8ee19735e01d734f.pdf
  • Companies F Raize from Hosmer. Chattanooga. [Accessed on 2023 Mar 11]. Available from: https://pdf.medicalexpo.com/pdf/fillauer/raise/74954-90667-_2.html
  • Blatchford. Elan. Experience smoother, safer and more natural walking. (OH). [Accessed on 2023 Oct 15]. Available from: https://www.blatchfordmobility.com/media/eaknn22w/203266609-elan-product-brochure-iss1-us-aw-web-pages.pdf
  • Blatchford. ElanIC. Do more. Feel good. (OH). [Accessed on 2023 Oct 15]. Available from: https://www.blatchfordmobility.com/media/upaoarld/elanic-brochure-iss1.pdf
  • Össur. PROPRIO FOOT Instructions for use. Reykjavík. (2021). [Accessed on 2023 Apr 16]. Available from: https://media.ossur.com/ossur-dam/image/upload/pi-documents-global/Proprio_Foot_1366_001_4.pdf
  • Alimusaj M, Fradet L, Braatz F, et al. Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees. Gait Posture. 2009;30(3):356–363.
  • Chitragari G, Mahler DB, Sumpio BJ, et al. Prosthetic options Available for the diabetic lower limb amputee. Clin Podiatr Med Surg. 2014;31(1):173–185.
  • Radcliffe CW. Four-bar linkage prosthetic knee mechanisms. Prosthetics Orthot Int. 1994;18(3):159–173. doi: 10.3109/03093649409164401
  • Tehlin. V-One microprocessor four-bar pneumatic knee prosthesis. New Taipei City. [Accessed on 2023 Mar 11]. Available from: https://drive.google.com/file/d/1CNFJoR5ByjBDCIv97TKG-HgY79u8fnpR/view
  • PROTEOR. I-CATALOG: COMPONENTS & MATERIALS. Saint-Apollinaire. p. 9 (2022). [Accessed on 2023 Mar 11]. Available from: https://www.proteorusa.com/_files/ugd/21024d_db814f7419234c32bdb700fb8ecded21.pdf
  • PROTEOR USA. Rediscover the versatility of the plié 3. Tempe. (2021). [Accessed on 2023 Mar 27]. Available from: https://www.proteorusa.com/_files/ugd/21024d_64e57f4612994631a9ce9b26de8ed371.pdf
  • Ottobock. Instructions For Use (User)| C-Leg 3C98-3, 3C88-3. Wien. [Accessed on 2023 Mar 11]. Available from: https://www.ottobock.com/en-us/product/3C88-3~23C98-3
  • PROTEOR. EXPECT MORE. PROTEOR QUATTRO microprocessor knee. Tempe. [Accessed on 2023 Mar 27]. Available from: https://www.freedomquattro.com/overview
  • Ottobock. Instructions for use (user) | 3B5-3 genium X3. Wien. [Accessed on 2023 Mar 27]. Available from: https://www.ottobock.com/en-us/product/3B5-3
  • Reboocon. INTUY® knee: motorized, lightweight, intuitive, safe. Delft. (2023).[Accessed on 2023 Jun 1]. Available from: https://www.rbionics.com/products/prosthetic-knee/
  • Blatchford. Orion 3 User Guide. Raunheim. [Accessed on 2023 Oct 15]. Available from: https://www.blatchfordmobility.com/en-gb/for-professionals/technical-documentation/
  • Mobrez A, El-Brollossy M, Yehia M, et al. Microprocessor-based hydraulic damping-controlled prosthetic knee for developing countries. 2019 Int Conf Robot Autom Ind IEEE. p. 1–6 (2019).
  • Össur. RHEO KNEE Instructions for use. Reykjavík. (2021). [Accessed on 2023 Jun 1]. Available from: https://media.ossur.com/ossur-dam/image/upload/pi-documents-global/RHEO_KNEE_IFUS.pdf
  • Össur. RHEO KNEE XC Instructions for use. Reykjavík. (2021). Available from: https://media.ossur.com/ossur-dam/image/upload/pi-documents-global/RHEO_KNEE_XC_IFUS.pdf. [Accessed on 2023 Jun 1].
  • Thiele J, Schöllig C, Bellmann M, et al. Designs and performance of three new microprocessor-controlled knee joints. Biomed Eng/Biomed Tech. 2018;64:119–126. doi: 10.1515/bmt-2017-0053
  • Yari P, Dijkstra PU, Geertzen JH. Functional outcome of hip disarticulation and hemipelvectomy: a cross-sectional national descriptive study in the Netherlands. Clin Rehabil. 2008;22(12):1127–1133. doi: 10.1177/0269215508095088
  • Aragon MP, Orozco GAV, Altamirano AA Bionic hip prosthesis based on polycentric mechanisms. 2013 Pan Am Heal Care Exch IEEE. p. 1–5 (2013).
  • Ottobock. Instructions for use (user)| 7E10 Helix3D. Duderstadt. Available from: https://www.ottobock.com/en-us/product/7E10 [Accessed on 2023 Mar 11].
  • Ludwigs E, Bellmann M, Schmalz T, et al. Biomechanical differences between two exoprosthetic hip joint systems during level walking. Prosthetics Orthot Int. 2010;34(4):449–460.
  • Gailledrat E, Moineau B, Seetha V, et al. Does the new helix 3D hip joint improve walking of hip disarticulated amputees? Ann Phys Rehabil Med. 2013;56(5):411–418.
  • Bartlett HL, King ST, Goldfarb M, et al. A semi-powered ankle prosthesis and unified controller for level and sloped walking. IEEE Trans Neural Syst Rehabil Eng. 2021;29:320–329. doi: 10.1109/TNSRE.2021.3049194
  • Glanzer EM, Adamczyk PG. Design and validation of a semi-active variable stiffness foot prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2018;26(12):2351–2359. doi: 10.1109/TNSRE.2018.2877962
  • Dedic R, Dindo H. SmartLeg: an intelligent active robotic prosthesis for lower-limb amputees. 2011 XXIII Int Symp Information, Commun Autom Technol IEEE. p. 1–7 (2011).
  • Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int J Rob Res. 2008;27(2):263–273. doi: 10.1177/0278364907084588
  • Sup F, Bohara A, Goldfarb M Design and control of a powered knee and ankle prosthesis. Proc 2007 IEEE Int Conf Robot Autom IEEE; Rome, Italy; 2007. p. 4134–4139.
  • Hata N, Hori Y Basic research on power limb using gait information of able-side leg. 7th Int Work Adv Motion Control Proc IEEE; Maribor, Slovenia; 2002. p. 540–545.
  • Hitt JK, Bellman R, Holgate M, et al. The SPARKy (Spring ankle with Regenerative kinetics) project: design and analysis of a robotic transtibial prosthesis with Regenerative kinetics. 6th Int Conf Multibody Syst Nonlinear Dyn Control Parts A, B, C ASMEDC; Las Vegas, Nevada; 2007. p. 1587–1596.
  • Fite K, Mitchell J, Sup F, et al. Design and control of an electrically powered knee prosthesis. 2007 IEEE 10th International Conference on Rehabilitation Robotics; Noordwijk, Netherlands;2007. p. 902–905.
  • Herr HM, Grabowski AM. Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc R Soc B Biol Sci. 2012;279(1728):457–464. doi: 10.1098/rspb.2011.1194
  • Convens B, Dong D, Furnemont R, et al. Modeling, design and test-bench validation of a semi-active propulsive ankle prosthesis with a Clutched series elastic actuator. IEEE Robot Autom Lett. 2019;4(2):1823–1830.
  • Hitt JK, Sugar TG, Holgate M, et al. An active foot-ankle prosthesis with biomechanical energy regeneration. J Med Device. 2010;4(1):1–9.
  • Bergelin BJ, Mattos JO, Wells JG, et al. Concept through preliminary bench testing of a powered lower limb prosthetic device. J Mech Robot. 2010;2(4):041005.
  • Bergelin BJ, Voglewede PA. Design of an active ankle-foot prosthesis utilizing a four-bar mechanism. J Mech Des. 2012;134(6):061004. doi: 10.1115/1.4006436
  • Dong D, Ge W, Convens B, et al. Design, optimization and Energetic evaluation of an efficient Fully powered ankle-foot prosthesis with a series elastic actuator. IEEE Access. 2020;8:61491–61503. doi: 10.1109/ACCESS.2020.2983518
  • Zhu J, Wang Q, Wang L. On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Trans Ind Electron. 2014;61(9):4797–4807. doi: 10.1109/TIE.2013.2293691
  • Pratt GA, Williamson MM Series elastic actuators. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots; Pittsburgh, PA, USA. Press; 1995. p. 399–406.
  • Gao F, Liao W-H, Chen B, et al. Design of powered ankle-foot prosthesis driven by parallel elastic actuator. 2015 IEEE International Conference on Rehabilitation Robotics (ICORR); Singapore; 2015. p. 374–379.
  • Martinez-Villalpando EC, Herr H. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev. 2009;46(3):361. doi: 10.1682/JRRD.2008.09.0131
  • Flynn L, Geeroms J, Jimenez-Fabian R, et al. Ankle-knee prosthesis with active ankle and energy transfer: development of the CYBERLEGs Alpha-prosthesis. Rob Auton Syst. 2015;73:4–15. doi: 10.1016/j.robot.2014.12.013
  • Van Ham R, Vanderborght B, Van Damme M, et al. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Rob Auton Syst. 2007;55(10):761–768.
  • Tran M, Gabert L, Hood S, et al. A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint. Sci Rob. 2022;7(72):eabo3996.
  • Versluys R, Desomer A, Lenaerts G, et al. A pneumatically powered below-knee prosthesis: design specifications and first experiments with an amputee. 2008 2nd IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics IEEE; Scottsdale, AZ, USA; 2008. p. 372–377.
  • Waycaster G, Wu S-K, Shen X. Design and control of a pneumatic artificial muscle actuated above-knee prosthesis. J Med Device. 2011;5:031003. doi:10.1115/1.4004417
  • Shen X, Christ D. Design and control of Chemomuscle: a liquid-propellant-powered muscle actuation system. J Dyn Syst Meas Control. 2011;133(2):021006. doi: 10.1115/1.4003208
  • Open-Source Leg. Available from: https://opensourceleg.com. [Accessed on 2023 Sep 1].
  • Ueyama Y, Kubo T, Shibata M. Robotic hip-disarticulation prosthesis: evaluation of prosthetic gaits in a non-amputee individual. Adv Robot. 2020;34(1):37–44. doi: 10.1080/01691864.2019.1705908
  • Fan M, Chen Y, He B, et al. Study on adaptive adjustment of variable joint stiffness for a semi-active hip prosthesis. Intelligent Robotics and Applications: 15th International Conference, ICIRA 2022; Harbin, China; 2022. p. 13–23.
  • Hachisuka K, Dozono K, Ogata H, et al. Total surface bearing below-knee prosthesis: advantages, disadvantages, and clinical implications. Arch Phys Med Rehabil. 1998;79(7):783–789.
  • Goh JCH, Lee PVS, Chong SY. Comparative study between patellar-tendon-bearing and pressure cast prosthetic sockets. J Rehabil Res Dev. 2004;41(3b):491. doi: 10.1682/JRRD.2004.03.0491
  • Highsmith J, Highsmith J. Common skin pathology in LE prosthesis users. J Am Acad Physician Assoc. 2007;20(11):33–36. doi: 10.1097/01720610-200711000-00018
  • Clippinger FW. Use of the temporary quadrilateral socket plaster pylon in the elderly amputee. South Med J. 1963;56(6):588–592. doi: 10.1097/00007611-196306000-00003
  • Rubin G, Fischer E, Dixon M. Prescription of above-knee and below-knee prostheses. Prosthetics Orthot Int. 1986;10(3):117–124. doi: 10.3109/03093648609164514
  • Pritham CH. Biomechanics and shape of the above-knee socket considered in light of the ischial containment concept. Prosthetics Orthot Int. 1990;14(1):9–21. doi: 10.3109/03093649009080311
  • Long IA. Normal Shape-Normal Alignment (NSNA) Above-Knee Prosthesis. Clin Prosthetics Orthot. 1985;9:9–14.
  • Sabolich J. Contoured Adducted Trochanteric-controlled Alignment method (CAT-CAM): introduction and basic principles. Clin Prosthetics Orthot. 1985;9:15–26.
  • Paterno L, Ibrahimi M, Gruppioni E, et al. Sockets for limb prostheses: a review of existing technologies and Open challenges. IEEE Trans Biomed Eng. 2018;65(9):1996–2010. doi: 10.1109/TBME.2017.2775100
  • Brodie M, Murray L, McGarry A. Transfemoral prosthetic socket designs: a review of the literature. JPO J Prosthetics Orthot. 2022;34(2):e73–e92. doi: 10.1097/JPO.0000000000000395
  • Fatone S, Caldwell R. Northwestern University flexible Subischial vacuum socket for persons with transfemoral amputation. Prosthetics Orthot Int. 2017;41(3):246–250. doi: 10.1177/0309364616685230
  • Alley RD, Williams TW III, Albuquerque MJ, et al. Prosthetic sockets stabilized by alternating areas of tissue compression and release. J Rehabil Res Dev. 2011;48(6):679.
  • Dietzen CJ, Harshberger J, Pidikiti RD. Suction sock suspension for above-knee prostheses. JPO J Prosthetics Orthot. 1991;3(2):90–93. doi: 10.1097/00008526-199100320-00005
  • Fillauer CE, Pritham CH, Fillauer KD. Evolution and development of the silicone suction socket (3S) for Below-Knee Prostheses. JPO J Prosthetics Orthot. 1989;1(2):92–103. doi: 10.1097/00008526-198901000-00007
  • Klute GK, Glaister BC, Berge JS. Prosthetic liners for lower limb amputees. Prosthetics Orthot Int. 2010;34(2):146–153. doi: 10.3109/03093641003645528
  • Gholizadeh H, Lemaire ED, Eshraghi A. The evidence-base for elevated vacuum in lower limb prosthetics: literature review and professional feedback. Clin Biomech. 2016;37:108–116. doi:10.1016/j.clinbiomech.2016.06.005
  • Beil TL, Street GM, Covey SJ. Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J Rehabil Res Dev. 2002;39(6):693–700.
  • Gholizadeh H, Abu Osman NA, Eshraghi A, et al. Satisfaction and problems experienced with transfemoral suspension systems: a Comparison between common suction socket and seal-in liner. Arch Phys Med Rehabil. 2013;94(8):1584–1589.
  • Silver-Thorn B, Current T, Kuhse B. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees. Prosthetics Orthot Int. 2012;36(4):435–442. doi: 10.1177/0309364612443379
  • Rogers E. Neurally-controlled ankle-foot prosthesis with non-backdrivable transmission for rock climbing augmentation. Massachusetts Institute of Technology, Department of Mechanical Engineering; 2019.
  • Huang S, Ferris DP. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. J Neuroeng Rehabil. 2012;9(1):55. doi: 10.1186/1743-0003-9-55
  • Yeon SH, Shu T, Rogers EA, et al. Flexible dry electrodes for EMG acquisition within lower extremity prosthetic sockets. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob); New York, NY; 2020. p. 1088–1095.
  • Zheng E, Wang L, Wei K, et al. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees. IEEE Trans Biomed Eng. 2014;61(12):2911–2920.
  • Jasni F, Hamzaid NA, Muthalif AGA, et al. In-socket sensory system for transfemoral amputees using piezoelectric sensors: an efficacy study. IEEE/ASME Trans Mechatron. 2016;21(5):2466–2476.
  • El-Sayed AM, Hamzaid NA, Tan KYS, et al. Detection of prosthetic knee movement phases via in-socket sensors: a feasibility study. Sci World J 2015. 2015;2015:1–13. doi: 10.1155/2015/923286
  • Ottobock. Instructions for use (user) | 3C60 Kenevo. Wien. Available from: https://www.ottobock.com/en-us/product/3C60. [Accessed on 2023 Mar 27].
  • Grimes DL. An active multi-mode above knee prosthesis controller. Massachusetts Institute of Technology. Department of Mechanical Engineering; 1979.
  • Stein JL. Design issues in the stance phase control of above-knee prostheses. Massachusetts Institute of Technology. Department of Mechanical Engineering; 1983.
  • Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng. 2010;57(3):542–551. doi: 10.1109/TBME.2009.2034734
  • Young AJ, Simon AM, Fey NP, et al. Intent recognition in a powered lower limb prosthesis using time history information. Ann Biomed Eng. 2014;42(3):631–641.
  • Peeraer L, Aeyels B, Van der Perre G. Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J Biomed Eng. 1990;12(3):178–182. doi: 10.1016/0141-5425(90)90037-N
  • Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Networks. 2008;21(4):654–666. doi: 10.1016/j.neunet.2008.03.006
  • Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng. 2009;56(1):65–73. doi: 10.1109/TBME.2008.2003293
  • Hoover CD, Fulk GD, Fite KB. The design and initial experimental validation of an active myoelectric transfemoral prosthesis. J Med Device. 2012;6(1):011005. doi: 10.1115/1.4005784
  • Hoover CD, Fulk GD, Fite KB. Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. IEEE/ASME Trans Mechatron. 2013;18(3):1191–1200. doi: 10.1109/TMECH.2012.2200498
  • Farmer S, Silver-Thorn B, Voglewede P, et al. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. J Neural Eng. 2014;11(5):056027.
  • Bai O, Kelly G, Fei D-Y, et al. A wireless, smart EEG system for volitional control of lower-limb prosthesis. TENCON 2015 - 2015 IEEE Reg 10 Conf IEEE. Macao, China; 2015. p. 1–6.
  • Murphy DP, Bai O, Gorgey AS, et al. Electroencephalogram-based brain–computer interface and lower-limb prosthesis control: a case study. Front Neurol. 2017;8:00696. doi: 10.3389/fneur.2017.00696
  • Gao H, Luo L, Pi M, et al. EEG-Based volitional control of prosthetic Legs for walking in different terrains. IEEE Trans Autom Sci Eng. 2021;18(2):530–540.
  • Jahanandish MH, Fey NP, Hoyt K. Lower limb motion estimation using ultrasound imaging: a framework for assistive device control. IEEE J Biomed Heal INFORMATICS. 2019;23(6):2505–2514. doi: 10.1109/JBHI.2019.2891997
  • Jahanandish MH, Fey NP, Hoyt K Prediction of distal lower-limb motion using ultrasound-derived features of proximal skeletal muscle. 2019 IEEE 16th Int Conf Rehabil Robot IEEE; Toronto, ON, Canada; 2019. p. 71–76.
  • Jahanandish MH, Rabe KG, Fey NP, et al. Gait phase identification during level, incline and decline ambulation tasks using portable sonomyographic sensing. 2019 IEEE 16th Int Conf Rehabil Robot IEEE; Toronto, ON, Canada; 2019. p. 988–993.
  • Rabe KG, Jahanandish MH, Hoyt K, et al. Use of sonomyography for continuous estimation of hip, knee and ankle moments during multiple ambulation tasks. 2020 8th IEEE RAS/EMBS Int Conf Biomed Robot Biomechatronics IEEE; New York, NY, USA; 2020. p. 1134–1139.
  • Rabe KG, Hassan Jahanandish M, Hoyt K, et al. Use of sonomyographic sensing to estimate knee angular velocity during varying modes of ambulation. 2020 42nd Annu Int Conf IEEE Eng Med Biol Soc IEEE; Montreal, QC, Canada; 2020. p. 3799–3802.
  • Rabe KG, Lenzi T, Fey NP. Performance of Sonomyographic and electromyographic sensing for Continuous estimation of joint torque during ambulation on multiple terrains. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2635–2644. doi:10.1109/TNSRE.2021.3134189
  • Zhang Q, Kim K, Sharma N. Prediction of ankle dorsiflexion moment by combined ultrasound sonography and Electromyography. IEEE Trans Neural Syst Rehabil Eng. 2020;28(1):318–327. doi: 10.1109/TNSRE.2019.2953588
  • Taylor CR, Srinivasan SS, Yeon SH, et al. Magnetomicrometry. Sci Rob. 2021;6(57):eabg0656.
  • Taylor CR, Clark WH, Clarrissimeaux EG, et al. Clinical viability of magnetic bead implants in muscle. Front Bioeng Biotechnol. 2022;10:1010276. doi: 10.3389/fbioe.2022.1010276
  • Taylor CR, Yeon SH, Clark WH, et al. Untethered muscle tracking using magnetomicrometry. Front Bioeng Biotechnol. 2022;10:1010275. doi: 10.3389/fbioe.2022.1010275
  • Davis BL, Ortolano M(, Richards K, et al. Realtime visual feedback diminishes energy consumption of amputee subjects during treadmill locomotion. JPO J Prosthetics Orthot. 2004;16(2):49–54.
  • Russell Esposito E, Choi HS, Darter BJ, et al. Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation? In: Grabowski A, editor. PLoS one. 2017;12(2):e0171786.
  • Chow DH, Cheng CT. Quantitative analysis of the effects of audio biofeedback on weight-bearing characteristics of persons with transtibial amputation during early prosthetic ambulation. J Rehabil Res Dev. 2000;37(3):255–260.
  • Baddeley A. Working memory. Curr Biol. 2010;20(4):R136–40. doi: 10.1016/j.cub.2009.12.014
  • Chen L, Feng Y, Chen B, et al. Improving postural stability among people with lower-limb amputations by tactile sensory substitution. J Neuroeng Rehabil. 2021;18(1):159.
  • Crea S, Edin BB, Knaepen K, et al. Time-discrete vibrotactile feedback contributes to improved gait symmetry in patients with lower limb amputations: case series. Phys Ther. 2017;97(2):198–207.
  • Martini E, Cesini I, D’Abbraccio J, et al. Increased symmetry of lower-limb amputees walking with concurrent bilateral vibrotactile feedback. IEEE Trans Neural Syst Rehabil Eng. 2021;29:74–84. doi: 10.1109/TNSRE.2020.3034521
  • Rusaw D, Hagberg K, Nolan L, et al. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J Rehabil Res Dev. 2012;49(8):1239.
  • Cesini I, Spigler G, Prasanna S, et al. Assessment of intuitiveness and comfort of wearable haptic feedback strategies for assisting level and stair walking. Electronics. 2020;9(10):1676.
  • Rokhmanova N, Rombokas E Vibrotactile feedback improves foot placement perception on stairs for lower-limb prosthesis users. 2019 IEEE 16th Int Conf Rehabil Robot IEEE; Toronto, ON, Canada; 2019. p. 1215–1220.
  • Keri M-I, Shehata AW, Marasco PD, et al. A cost-Effective inertial measurement system for tracking movement and Triggering Kinesthetic feedback in lower-limb prosthesis users. Sensors. 2021;21(5):1844.
  • Culjat MO, Fan RE, Grundfest WS Optimization of a tactile feedback system to aid the rehabilitation of lower-limb amputees. 2008 Virtual Rehabil IEEE. p. 63 (2008).
  • Fan RE, Culjat MO, King C-H, et al. A haptic feedback system for lower-limb prostheses. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):270–277.
  • Husman MAB, Maqbool HF, Awad MI, et al. A wearable skin stretch haptic feedback device: towards improving balance control in lower limb amputees. 2016 38th Annu Int Conf IEEE Eng Med Biol Soc IEEE; Orlando, FL 2016; p. 2120–2123.
  • Shehata AW, Keri M-I, Gomez M, et al. Skin stretch enhances illusory movement in persons with lower-limb amputation. 2019 IEEE 16th Int Conf Rehabil Robot IEEE; Toronto, ON, Canada; 2019. p. 1233–1238.
  • Chee L, Valle G, Preatoni G, et al. Cognitive benefits of using non-invasive compared to implantable neural feedback. Sci Rep. 2022;12(1):16696.
  • Petrini FM, Valle G, Bumbasirevic M, et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci Transl Med. 2019;11(512):eaav8939.
  • Kotz R. Rotationplasty. Semin Surg Oncol. 1997;13(1):34–40. doi: 10.1002/(SICI)1098-2388(199701/02)13:1<34:AID-SSU6>3.0.CO;2-5
  • Van Nes CP. Rotation-plasty for congenital defects of the femur. J Bone Joint Surg Br. 1950;32-B(1):12–16. doi: 10.1302/0301-620X.32B1.12
  • Fuchs B, Kotajarvi BR, Kaufman KR, et al. Functional outcome of patients with rotationplasty about the knee. Clin Orthop Relat Res. 2003;415:52–58. doi: 10.1097/01.blo.0000093896.12372.c1
  • Al Muderis M, Lu W, Li JJ. Osseointegrated prosthetic limb for the treatment of lower limb amputations. Unfallchirurg. 2017;120:306–311. doi:10.1007/s00113-016-0296-8
  • Muderis MA, Aschoff HH, Bosley B, et al. Direct skeletal attachment prosthesis for the amputee athlete: the unknown potential. Sport Eng. 2016;19(3):141–145.
  • Hobusch GM, Döring K, Brånemark R, et al. Advanced techniques in amputation surgery and prosthetic technology in the lower extremity. EFORT Open Rev. 2020;5(10):724–741.
  • Brånemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.
  • Gholizadeh H, Abu Osman NA, Eshraghi A, et al. Transfemoral prosthesis suspension systems. Am J Phys Med Rehabil. 2014;93(9):809–823.
  • Hagberg K, Ghasemi Jahani SA, Omar O, et al. Osseointegrated prostheses for the rehabilitation of patients with transfemoral amputations: a prospective ten-year cohort study of patient-reported outcomes and complications. J Orthop Transl. 2023;38:56–64. doi: 10.1016/j.jot.2022.09.004
  • Pospiech PT, Wendlandt R, Aschoff H-H, et al. Quality of life of persons with transfemoral amputation: comparison of socket prostheses and osseointegrated prostheses. Prosthetics Orthot Int. 2021;45(1):20–25.
  • Hebert JS, Rehani M, Stiegelmar R. Osseointegration for Lower-Limb Amputation. JBJS Rev. 2017;5(10):e10. doi: 10.2106/JBJS.RVW.17.00037
  • Integrum. Get your life back with the OPRATM implant system. Available from: https://integrum.se/what-we-do/our-products-future-solutions/opra-implant-system/. [Accessed on 2023 Jul 16].
  • Hoellwarth JS, Tetsworth K, Kendrew J, et al. Periprosthetic osseointegration fractures are infrequent and management is familiar. Bone Joint J. 2020;102-B(2):162–169.
  • Haque R, Al-Jawazneh S, Hoellwarth J, et al. Osseointegrated reconstruction and rehabilitation of transtibial amputees: the osseointegration group of Australia surgical technique and protocol for a prospective cohort study. BMJ Open. 2020;10(10):e038346.
  • Fracol ME, Janes LE, Ko JH, et al. Targeted muscle reinnervation in the lower leg. Plast Reconstr Surg. 2018;142(4):541e–550e.
  • Hargrove LJ, Simon AM, Young AJ, et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med. 2013;369(13):1237–1242.
  • Hart SE, Kung TA. Novel approaches to reduce symptomatic neuroma pain After limb amputation. Curr Phys Med Rehabil Reports. 2020;8(3):83–91. doi: 10.1007/s40141-020-00276-2
  • Santosa KB, Oliver JD, Cederna PS, et al. Regenerative peripheral nerve interfaces for Prevention and management of Neuromas. Clin Plast Surg. 2020;47(2):311–321.
  • Dumanian GA, Potter BK, Mioton LM, et al. Targeted muscle reinnervation treats neuroma and phantom pain in Major limb amputees. Ann Surg. 2019;270(2):238–246.
  • Clites TR, Herr HM, Srinivasan SS, et al. The ewing amputation: the first human implementation of the Agonist-antagonist myoneural interface. Plast Reconstr Surg - Glob Open. 2018;6(11):e1997.
  • Troyk PR, DeMichele GA, Kerns DA, et al. IMES: An Implantable Myoelectric Sensor. 2007 29th Annu Int Conf IEEE Eng Med Biol Soc IEEE; Lyon, France; 2007. p. 1730–1733.
  • Salminger S, Sturma A, Hofer C, et al. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci Rob. 2019;4(32):eaaw6306.
  • Bergmeister KD, Vujaklija I, Muceli S, et al. Broadband prosthetic interfaces: combining nerve transfers and implantable multichannel EMG Technology to decode spinal motor neuron activity. Front Neurosci. 2017;11:421. doi: 10.3389/fnins.2017.00421
  • Weir RF, Troyk PR, DeMichele G, et al. Implantable myoelectric sensors (IMES) for upper-extremity prosthesis control- preliminary work. Proc 25th Annu Int Conf IEEE Eng Med Biol Soc (IEEE Cat No03CH37439); Cancun, Mexico. IEEE. p. 1562–1565.
  • Merrill DR, Lockhart J, Troyk PR, et al. Development of an implantable myoelectric sensor for advanced prosthesis control. Artif Organs. 2011;35(3):249–252.
  • Össur. Research and development. Available from: https://www.ossur.com/global/about-ossur/innovation/research-and-development. [Accessed on 2023 Jun 1].
  • Page DM, George JA, Kluger DT, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain After long-term hand amputation. Front Hum Neurosci. 2018;12:352. doi: 10.3389/fnhum.2018.00352
  • Integrum. Upgrade your OPRATM implant system to e-OPRATM. Available from: https://integrum.se/what-we-do/our-products-future-solutions/e-opra/. [Accessed on 2023 Jul 16].
  • Mastinu E, Doguet P, Botquin Y, et al. Embedded system for prosthetic control using implanted neuromuscular interfaces Accessed via an osseointegrated implant. IEEE Trans Biomed Circuits Syst. 2017;11(4):867–877.
  • Dingle AM, Ness JP, Novello J, et al. Proof of concept for a chronic, percutaneous, osseointegrated neural interface for bi-directional prosthetic control with haptic feedback. 2019 9th Int IEEE/EMBS Conf Neural Eng IEEE; San Francisco, CA; 2019. p. 782–786.
  • Wentink EC, Prinsen EC, Rietman JS, et al. Comparison of muscle activity patterns of transfemoral amputees and control subjects during walking. J Neuroeng Rehabil. 2013;10(1):87.
  • Wen Y, Brandt A, Si J, et al. Automatically customizing a powered knee prosthesis with human in the loop using adaptive dynamic programming. 2017 International Symposium on Wearable Robotics and Rehabilitation (WeRob) Houston, TX; 2017. p.1–2
  • Hernández I, Yu W, Jin Z. Control of active lower limb prosthesis using human-in-the-loop scheme. Cogent Eng. 2022;9(1):2067026. doi: 10.1080/23311916.2022.2067026
  • Kunutsor SK, Gillatt D, Blom AW. Systematic review of the safety and efficacy of osseointegration prosthesis after limb amputation. Br J Surg. 2018;105(13):1731–1741. doi: 10.1002/bjs.11005
  • Al Muderis M, Khemka A, Lord SJ, et al. Safety of osseointegrated implants for transfemoral amputees. J Bone Jt Surg. 2016;98(11):900–909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.