286
Views
0
CrossRef citations to date
0
Altmetric
Special Report

The realization of medical devices for precision surgery – development and implementation of ‘stop-and-go’ imaging technologies

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 349-358 | Received 12 Sep 2023, Accepted 05 Apr 2024, Published online: 09 May 2024

References

  • Spencer F. Teaching and measuring surgical techniques: the technical evaluation of competence. Bull Am Coll Surg. 1978;63(3):9–12.
  • Research GV. General Surgery Devices Market Size, Share & Trends Analysis Report by Application (Orthopedic, Plastic Surgery, Cardiology, Ophthalmology), by End-Use (Hospitals, ASCs), by Type, by Region, and Segment Forecasts, 2023–2030; 2022. Available from: https://www.grandviewresearch.com/industry-analysis/general-surgery-devices-market
  • Insights GM. Medical Imaging Market - by Product (X-Ray Devices, Magnetic Resonance Imaging (MRI), Ultrasound, Computed Tomography, Nuclear Imaging, Mammography), by End-Use (Hospitals, Diagnostic Centers) & Forecast, 2022–2030; 2022. Available from: https://www.gminsights.com/industry-analysis/medical-imaging-market
  • Chin PT, Beekman CA, Buckle T, et al. Multispectral visualization of surgical safety-margins using fluorescent marker seeds. Am J Nucl Med Mol Imaging. 2012;2(2):151.
  • Hartmans E, Tjalma JJ, Linssen MD, et al. Potential red-flag identification of colorectal adenomas with wide-field fluorescence molecular endoscopy. Theranostics. 2018;8(6):1458. doi: 10.7150/thno.22033
  • LLP DBR. The global image-guided surgery devices market to exhibit growth at a CAGR of 7.53% by 2027, assesses DelveInsight 2022. Available from: https://www.globenewswire.com/en/news-release/2022/12/21/2578125/0/en/The-Global-Image-Guided-Surgery-Devices-Market-to-Exhibit-Growth-at-a-CAGR-of-7-53-by-2027-Assesses-DelveInsight.html
  • Research P. Surgical Equipment Market (By Product: surgical Sutures & Staplers, Handheld Surgical Device, and Electrosurgical Devices; Application: neurosurgery, Wound Care, Obstetrics & Gynecology, Cardiovascular, Orthopedic, Plastic & Reconstructive Surgery, and Others) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2032; 2023. Available from: https://www.precedenceresearch.com/surgical-equipment-market
  • Van Oosterom MN, Rietbergen DD, Welling MM, et al. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert review of medical devices. Expert Rev Med Devices. 2019;16(8):711–734. doi: 10.1080/17434440.2019.1642104
  • Collamati F, van Oosterom MN, Hadaschik BA, et al. Beta radioguided surgery: towards routine implementation? Q J Nucl Med Mol Imaging. 2021;65(3):229–243. doi: 10.23736/S1824-4785.21.03358-6
  • Collamati F, Morganti S, Van Oosterom MN, et al. First-in-human validation of a DROP-IN β-probe for robotic radioguided surgery: defining optimal signal-to-background discrimination algorithm. Eur J Nucl Med Mol Imaging. 2024;1–11. doi: 10.1007/s00259-024-06653-6. Accepted for publication.
  • Boykoff N, Grimm J. Current clinical applications of Cerenkov luminescence for intraoperative molecular imaging. Eur J Nucl Med Mol Imaging. 2024;1–10. doi: 10.1007/s00259-024-06602-3
  • Erkkilä MT, Reichert D, Hecker-Denschlag N, et al. Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery. J Biomed Opt. 2020;25(7):1–71202. doi: 10.1117/1.JBO.25.7.071202
  • van Oosterom MN, van der Poel HG, van Leeuwen FWB, et al. Extending the hybrid surgical guidance concept with freehand fluorescence tomography. IEEE Trans Med Imaging. 2020;39(1):226–235. doi: 10.1109/TMI.2019.2924254
  • Azargoshasb S, Molenaar L, Rosiello G, et al. Advancing intraoperative magnetic tracing using 3D freehand magnetic particle imaging. Int J CARS. 2022;17(1):211–218. doi: 10.1007/s11548-021-02458-2
  • Dadfar SM, Camozzi D, Darguzyte M, et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J nanobiotechnol. 2020;18(1):1–13. doi: 10.1186/s12951-020-0580-1
  • van Leeuwen FWB, Schottelius M, Brouwer OR, et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. J Nucl Med. 2020;61(1):13–19. doi: 10.2967/jnumed.119.228684
  • Berrens A-C, van Oosterom MN, Slof LJ, et al. Three-way multiplexing in prostate cancer patients—combining a bimodal sentinel node tracer with multicolor fluorescence imaging. Eur J Nucl Med Mol Imaging. 2023;50(4):1262–1263. doi: 10.1007/s00259-022-06034-x
  • Cacciamani GE, Shakir A, Tafuri A, et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol. 2020;38(4):883–896. doi: 10.1007/s00345-019-02870-z
  • Harke NN, Godes M, Wagner C, et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol. 2018;36(11):1817–1823. doi: 10.1007/s00345-018-2330-7
  • Jafari MD, Lee KH, Halabi WJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27(8):3003–3008. doi: 10.1007/s00464-013-2832-8
  • de Vries HMD, Bekers E, van Oosterom MN, et al. C-MET receptor–targeted fluorescence on the road to image-guided surgery in penile squamous cell carcinoma patients. J Nucl Med. 2022;63(1):51–56. doi: 10.2967/jnumed.120.261864
  • Van Leeuwen FWB, Van Willigen DM, Buckle T. Clinical application of fluorescent probes. In: Signore A, editor. Nuclear Medicine and Molecular Imaging. Vol. 1. Amsterdam, The Netherlands: Elsevier; 2022. p. 682–695. doi: 10.1016/B978-0-12-822960-6.00104-6
  • Lee YJ, Krishnan G, Nishio N, et al. Intraoperative fluorescence‐guided surgery in head and neck squamous cell carcinoma. Laryngoscope. 2021;131(3):529–534. doi: 10.1002/lary.28822
  • Okusanya OT, DeJesus EM, Jiang JX, et al. Intraoperative molecular imaging can identify lung adenocarcinomas during pulmonary resection. J Thorac Cardiovasc Surg. 2015;150(1):28–35. e1. doi: 10.1016/j.jtcvs.2015.05.014
  • Vonk J, de Wit JG, Voskuil FJ, et al. Epidermal growth factor receptor–targeted fluorescence molecular imaging for postoperative lymph node assessment in patients with oral cancer. J Nucl Med. 2022;63(5):672–678. doi: 10.2967/jnumed.121.262530
  • Collarino A, Vidal-Sicart S, Perotti G, et al. The sentinel node approach in gynaecological malignancies. Clin Transl Imaging. 2016;4(5):411–420. doi: 10.1007/s40336-016-0187-6
  • de Barros HA, van Oosterom MN, Donswijk ML, et al. Robot-assisted prostate-specific membrane antigen–radioguided salvage surgery in recurrent prostate cancer using a DROP-IN gamma probe: the first prospective feasibility study. Eur Urol. 2022;82(1):97–105. doi: 10.1016/j.eururo.2022.03.002
  • Falkenbach F, Knipper S, Koehler D, et al. Safety and efficiency of repeat salvage lymph node dissection for recurrence of prostate cancer using PSMA-radioguided surgery (RGS) after prior salvage lymph node dissection with or without initial RGS support. World J Urol. 2023;41(9):2343–2350. doi: 10.1007/s00345-023-04534-5
  • Olmos RAV, Rietbergen DD, Rubello D, et al. Sentinel node imaging and radioguided surgery in the era of SPECT/CT and PET/CT: toward new interventional nuclear medicine strategies. Clin Nucl Med. 2020;45(10):771–777. doi: 10.1097/RLU.0000000000003206
  • Nakaseko Y, Ishizawa T, Saiura A. Fluorescence‐guided surgery for liver tumors. J Surg Oncol. 2018;118(2):324–331. doi: 10.1002/jso.25128
  • Reinhart MB, Huntington CR, Blair LJ, et al. Indocyanine green: historical context, current applications, and future considerations. Surg Innov. 2016;23(2):166–175. doi: 10.1177/1553350615604053
  • Valdes PA, Millesi M, Widhalm G, et al. 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence guidance in meningioma surgery. J Neurooncol. 2019;141(3):555–565. doi: 10.1007/s11060-018-03079-7
  • Administration USFD FDA approves new imaging drug to help identify ovarian cancer lesions 2021. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-imaging-drug-help-identify-ovarian-cancer-lesions
  • Knipper S, Irai MM, Simon R, et al. Cohort study of oligorecurrent prostate cancer patients: oncological outcomes of patients treated with salvage lymph node dissection via prostate-specific membrane antigen–radioguided surgery. Eur Urol. 2023;83(1):62–69. doi: 10.1016/j.eururo.2022.05.031
  • Kitai T, Inomoto T, Miwa M, et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12(3):211–215. doi: 10.2325/jbcs.12.211
  • Azargoshasb S, De Barros HA, Rietbergen DDD, et al. Artificial Intelligence-Supported Video Analysis as a Means to Assess the Impact of DROP-IN Image Guidance on Robotic Surgeons: Radioguided Sentinel Lymph Node versus PSMA-Targeted Prostate Cancer Surgery. Adv Intell Syst. 2023;5(10):2300192. doi: 10.1002/aisy.202300192
  • van Oosterom MN, Azargoshasb S, Slof LJ, et al. Robotic radioguided surgery: toward full integration of radio- and hybrid-detection modalities. Clin Transl Imaging. 2023;11(6):533–544. doi: 10.1007/s40336-023-00560-w
  • Sun Y, Wang Z, Jiang F, et al. Utility of indocyanine green videoangiography with FLOW 800 analysis in brain tumour resection as a venous protection technique. BMC Surg. 2022;22(1):126. doi: 10.1186/s12893-022-01573-4
  • Muraglia L, Mattana F, Travaini LL, et al. First live-experience session with PET/CT specimen imager: a pilot analysis in prostate cancer and neuroendocrine tumor. Biomedicines. 2023;11(2):645. doi: 10.3390/biomedicines11020645
  • Costa PF, Püllen L, Kesch C, et al. 18F-PSMA Cerenkov luminescence and flexible autoradiography imaging in a prostate cancer mouse model and first results of a radical prostatectomy feasibility study in men. J Nucl Med. 2023;64(4):598–604. doi: 10.2967/jnumed.122.264670
  • Matar-Ujvary R, Haglich K, Flanagan MR, et al. The impact of breast-conserving surgery re-excision on patient-reported outcomes using the BREAST-Q. Ann Surg Oncol. 2023;30(9):5341–5349. doi: 10.1245/s10434-023-13592-3
  • Keiser G. Light-Tissue Interactions. Biophotonics: concepts to Applications. Singapore: Springer Singapore; 2016. p. 147–196.
  • KleinJan GH, Bunschoten A, van den Berg NS, et al. Fluorescence guided surgery and tracer-dose, fact or fiction? Eur J Nucl Med Mol Imaging. 2016;43(10):1857–1867. doi: 10.1007/s00259-016-3372-y
  • Stibbe JA, de Barros HA, Linders DG, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial. Lancet Oncol. 2023;24(5):457–467. doi: 10.1016/S1470-2045(23)00102-X
  • Azargoshasb S, Boekestijn I, Roestenberg M, et al. Quantifying the impact of signal-to-background ratios on surgical discrimination of fluorescent lesions. Mol Imaging Biol. 2023;25(1):180–189. doi: 10.1007/s11307-022-01736-y
  • Kennedy GT, Azari FS, Bernstein E, et al. First-in-human results of targeted intraoperative molecular imaging for visualization of ground glass opacities during robotic pulmonary resection. Transl Lung Cancer Res. 2022;11(8):1567. doi: 10.21037/tlcr-21-1004
  • Alfonso‐Garcia A, Bec J, Weyers B, et al. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. J Biophotonics. 2021;14(6):e202000472. doi: 10.1002/jbio.202000472
  • Buckle T, Chin PT, van den Berg NS, et al. Tumor bracketing and safety margin estimation using multimodal marker seeds: a proof of concept. J Biomed Opt. 2010;15(5):056021–8. doi: 10.1117/1.3503955
  • Luthman AS, Dumitru S, Quiros‐Gonzalez I, et al. Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. J Biophotonics. 2017;10(6–7):840–853. doi: 10.1002/jbio.201600304
  • Zhu S, Yung BC, Chandra S, et al. Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics. 2018;8(15):4141. doi: 10.7150/thno.27995
  • Olde Heuvel J, de Wit-van der Veen B, van der Poel H, et al. Intraoperative specimen assessment in prostate cancer surgery using Cerenkov luminescence imaging. In: Proc. SPIE 11224, Optics and Ionizing Radiation; 2020; San Francisco. San Francisco: SPIE BiOS; 2020. p. 1122407. doi: 10.1117/12.2542650
  • Becker A, Masthoff M, Claussen J, et al. Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach. Eur Radiol. 2018;28(2):602–609. doi: 10.1007/s00330-017-5002-x
  • Ferrer-Roca O. Telepathology and optical biopsy. Int J Telemed Appl. 2009;2009:1–9. doi: 10.1155/2009/740712
  • Carrasco-Zevallos OM, Viehland C, Keller B, et al. Review of intraoperative optical coherence tomography: technology and applications. Biomed Opt Express. 2017;8(3):1607–1637. doi: 10.1364/BOE.8.001607
  • Orringer DA, Pandian B, Niknafs YS, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017;1(2):0027. doi: 10.1038/s41551-016-0027
  • Kang HG, Song SH, Han YB, et al. Proof-of-concept of a multimodal laparoscope for simultaneous NIR/gamma/visible imaging using wavelength division multiplexing. Opt express. 2018;26(7):8325–8339. doi: 10.1364/OE.26.008325
  • van Oosterom MN, Simon H, Mengus L, et al. Revolutionizing (robot-assisted) laparoscopic gamma tracing using a drop-in gamma probe technology. Am J Nucl Med Mol Imaging. 2016;6(1):1.
  • Berrens A-C, Sorbi MA, Donswijk ML, et al. Strong correlation between SUVmax on PSMA PET/CT and numeric drop-in γ-probe signal for intraoperative identification of prostate cancer lesions. J Nucl Med. 2024;65(4):548–554. accepted for publication. doi: 10.2967/jnumed.123.267075.
  • van der Ploeg IM, Valdés Olmos RA, Kroon BB, et al. The yield of SPECT/CT for anatomical lymphatic mapping in patients with melanoma. Ann Surg Oncol. 2009;16(6):1537–1542. doi: 10.1245/s10434-009-0339-2
  • Michalik B, Engels S, Otterbach MC, et al. A new bimodal approach for sentinel lymph node imaging in prostate cancer using a magnetic and fluorescent hybrid tracer. Eur J Nucl Med Mol Imaging. 2023;1–7. doi: 10.1007/s00259-023-06522-8
  • Winter A, Kowald T, Paulo TS, et al. Magnetic resonance sentinel lymph node imaging and magnetometer-guided intraoperative detection in prostate cancer using superparamagnetic iron oxide nanoparticles. Int j nanomed. 2018;Volume 13:6689–6698. doi: 10.2147/IJN.S173182
  • Berrens A-C, Knipper S, Marra G, et al. State of the art in prostate-specific membrane antigen–targeted surgery—a systematic review. Eur Urol Open Sci. 2023;54:43–55. doi: 10.1016/j.euros.2023.05.014
  • van Willigen DM, van den Berg NS, Buckle T, et al. Multispectral fluorescence guided surgery; a feasibility study in a phantom using a clinical-grade laparoscopic camera system. Am J Nucl Med Mol Imaging. 2017;7(3):138.
  • Boekestijn I, Azargoshasb S, Schilling C, et al. PET-and SPECT-based navigation strategies to advance procedural accuracy in interventional radiology and image-guided surgery. Q J Nucl Med Mol Imaging. 2021;65(3):244–260. doi: 10.23736/S1824-4785.21.03361-6
  • Porpiglia F, Checcucci E, Amparore D, et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA ≥ 10): a new intraoperative tool overcoming the ultrasound guidance. Eur Urol. 2020;78(2):229–238. doi: 10.1016/j.eururo.2019.11.024
  • Wendler T, Herrmann K, Schnelzer A, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37(8):1452–1461. doi: 10.1007/s00259-010-1430-4
  • Azargoshasb S, Berrens AC, Slof LJ, et al. Robot-assisted SPECT - integrating nuclear medicine in robotic urologic surgery. Eur Urol. 2024 Feb 17. doi: 10.1016/j.eururo.2024.01.022. Online ahead of print: S0302-2838(24)00064-2.
  • Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. J Biomed Imaging. 2012;2012:1–26. doi: 10.1155/2012/940585
  • Serban D, Badiu DC, Davitoiu D, et al. Systematic review of the role of indocyanine green near‑infrared fluorescence in safe laparoscopic cholecystectomy. Exp Ther Med. 2022;23(2):1–10. doi: 10.3892/etm.2021.11110
  • Slooter M, Janssen A, Bemelman W, et al. Currently available and experimental dyes for intraoperative near-infrared fluorescence imaging of the ureters: A systematic review. Tech Coloproctol. 2019;23(4):305–313. doi: 10.1007/s10151-019-01973-4
  • Suzuki Y, Kajita H, Konishi N, et al. Subcutaneous lymphatic vessels in the lower extremities: comparison between photoacoustic lymphangiography and near-infrared fluorescence lymphangiography. Radiology. 2020;295(2):469–474. doi: 10.1148/radiol.2020191710
  • Wit EM, KleinJan GH, Berrens A-C, et al. A hybrid radioactive and fluorescence approach is more than the sum of its parts; outcome of a phase II randomized sentinel node trial in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2023;50(9):2861–2871. doi: 10.1007/s00259-023-06191-7
  • Meershoek P, Buckle T, van Oosterom MN, et al. Can intraoperative fluorescence imaging identify all lesions while the road map created by preoperative nuclear imaging is masked? J Nucl Med. 2020;61(6):834–841. doi: 10.2967/jnumed.119.235234
  • Miller DR, Ashour R, Sullender CT, et al. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. Neurophoton. 2022;9(2):021908–021908. doi: 10.1117/1.NPh.9.2.021908
  • van Beurden F, van Willigen DM, Vojnovic B, et al. Multi-wavelength fluorescence in image-guided surgery, clinical feasibility and future perspectives. Mol Imaging. 2020;19:1536012120962333. doi: 10.1177/1536012120962333
  • Debie P, Devoogdt N, Hernot S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies. 2019;8(1):12. doi: 10.3390/antib8010012
  • Poumellec M, Dejode M, Figl A, et al. Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections. Gynecol Obstet Fertil. 2016;44(4):207–210. doi: 10.1016/j.gyobfe.2016.02.012
  • van den Berg NS, Simon H, Kleinjan GH, et al. First-in-human evaluation of a hybrid modality that allows combined radio-and (near-infrared) fluorescence tracing during surgery. Eur J Nucl Med Mol Imaging. 2015;42(11):1639–1647. doi: 10.1007/s00259-015-3109-3
  • Vidal-Sicart S, Seva A, Campos F, et al. Clinical use of an opto-nuclear probe for hybrid sentinel node biopsy guidance: first results. Int J CARS. 2019;14(2):409–416. doi: 10.1007/s11548-018-1816-5
  • Yang Y, Biswal NC, Wang T, et al. Potential role of a hybrid intraoperative probe based on OCT and positron detection for ovarian cancer detection and characterization. Biomed Opt Express. 2011;2(7):1918–1930. doi: 10.1364/BOE.2.001918
  • KleinJan GH, Hellingman D, van den Berg NS, et al. Hybrid surgical guidance: does hardware integration of γ-and fluorescence imaging modalities make sense? J Nucl Med. 2017;58(4):646–650. doi: 10.2967/jnumed.116.177154
  • Lees JE, Bugby SL, Alqahtani MS, et al. A multimodality hybrid gamma-optical camera for intraoperative imaging. Sensors. 2017;17(3):554. doi: 10.3390/s17030554
  • Freesmeyer M, Opfermann T, Winkens T. Hybrid integration of real-time US and freehand SPECT: proof of concept in patients with thyroid diseases. Radiology. 2014;271(3):856–861. doi: 10.1148/radiol.14132415
  • Pani R, Pellegrini R, Cinti M, et al. Integrated ultrasound and gamma imaging probe for medical diagnosis. J Instrum. 2016;11(3):C03037. doi: 10.1088/1748-0221/11/03/C03037
  • Yanik E, Intes X, Kruger U, et al. Deep neural networks for the assessment of surgical skills: A systematic review. J Defense Model Simul. 2022;19(2):159–171. doi: 10.1177/15485129211034586
  • Hernot S, van Manen L, Debie P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20(7):e354–e367. doi: 10.1016/S1470-2045(19)30317-1
  • Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–805. doi: 10.2967/jnumed.119.227967