0
Views
0
CrossRef citations to date
0
Altmetric
Meta-analysis

Advancing robot-guided techniques in lumbar spine surgery: a systematic review and meta-analysis

ORCID Icon, , , , , , , & show all
Received 06 Feb 2024, Accepted 04 Jun 2024, Published online: 15 Jul 2024

References

  • Verma R, Virk S, Qureshi S. Interbody fusions in the lumbar spine: a review. Hss J. 2020 Jul;16(2):162–167. doi: 10.1007/s11420-019-09737-4
  • Keorochana G, Setrkraising K, Woratanarat P, et al. Clinical outcomes after minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Neurosurg Rev. 2018;41(3):755–770. doi: 10.1007/s10143-016-0806-8
  • Godzik J, Walker CT, Hartman C, et al. A quantitative assessment of the accuracy and reliability of robotically guided percutaneous pedicle screw placement: technique and application accuracy. Oper Neurosurg. 2019;17(4):389–395. doi: 10.1093/ons/opy413
  • Spitz SM, Sandhu FA, Voyadzis JM. Percutaneous “K-wireless” pedicle screw fixation technique: an evaluation of the initial experience of 100 screws with assessment of accuracy, radiation exposure, and procedure time. J Neurosurg Spine. 2015;22(4):422–431. doi: 10.3171/2014.11.SPINE14181
  • Peng YN, Tsai LC, Hsu HC. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Transl Med. 2020 Jul;8(13):824–824. doi: 10.21037/atm-20-1106
  • Youkilis AS, Quint DJ, McGillicuddy JE, et al. Stereotactic navigation for placement of pedicle screws in the thoracic spine. Neurosurgery. 2001 Apr 1;48(4):771–779. doi: 10.1227/00006123-200104000-00015
  • Vardiman AB, Wallace DJ, Crawford NR, et al. Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery. J Robot Surg. 2020 Jun;14(3):409–413. doi: 10.1007/s11701-019-00994-3
  • Zhou LP, Zhang RJ, Sun YW, et al. Accuracy of pedicle screw placement and four other clinical outcomes of robotic guidance technique versus computer-assisted navigation in thoracolumbar surgery: a meta-analysis. World Neurosurg. 2021 Feb;146:e139–e150. doi: 10.1016/j.wneu.2020.10.055
  • Kochanski RB, Lombardi JM, Laratta JL, et al. Image-guided navigation and robotics in spine surgery. Neurosurgery. 2019 Jun 1;84(6):1179–1189. doi: 10.1093/neuros/nyy630
  • Zhang Q, Han XG, Xu YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease. World Neurosurg. 2019 May 1;125:e429–34. doi: 10.1016/j.wneu.2019.01.097
  • Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot Comput Assisted Surg. 2006 Jun;2(2):146–153. doi: 10.1002/rcs.90
  • Barzilay Y, Kaplan L, Libergall M. Robotic assisted spine surgery—a breakthrough or a surgical toy? Int J Med Robot Comput Assisted Surg. 2008 Sep;4(3):195–196. doi: 10.1002/rcs.216
  • Elswick CM, Strong MJ, Joseph JR, et al. Robotic-assisted spinal surgery: current generation instrumentation and new applications. Neurosurg Clin N Am. 2020 Jan;31(1):103–110. doi: 10.1016/j.nec.2019.08.012
  • D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg. 2019 Nov 7;6:9–23. doi: 10.2147/RSRR.S190720
  • Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J. 2021 Feb;21(2):181–192. doi: 10.1016/j.spinee.2020.09.007
  • Matur AV, Palmisciano P, Duah HO, et al. Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: a systematic review and meta-analysis. Spine J. 2023 Feb;23(2):197–208. doi: 10.1016/j.spinee.2022.10.006
  • Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine (Phila Pa 1976). 2020 Jan 15;45(2):E111–E119. doi: 10.1097/BRS.0000000000003193
  • Li W, Li G, Chen W, et al. The safety and accuracy of robot-assisted pedicle screw internal fixation for spine disease: a meta-analysis. Bone Joint Res. 2020 Oct 10;9(10):653–666. doi: 10.1302/2046-3758.910.BJR-2020-0064.R2
  • Liu H, Chen W, Wang Z, et al. Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis. Int J Comput Assist Radiol Surg. 2016 Dec;11(12):2273–2281. doi: 10.1007/s11548-016-1448-6
  • Tovar MA, Dowlati E, Zhao DY, et al. Robot-assisted and augmented reality-assisted spinal instrumentation: a systematic review and meta-analysis of screw accuracy and outcomes over the last decade. J Neurosurg Spine. 2022 Feb 25:1–16. doi: 10.3171/2022.1.SPINE211345
  • George A, Stead TS, Ganti L. What’s the risk: differentiating risk ratios, odds ratios, and hazard ratios? Cureus. 2020 Aug 26;12(8):e10047. doi: 10.7759/cureus.10047
  • Amir-Behghadami M, Population JA. Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg Med J. 2020 Jun;37(6):387. doi: 10.1136/emermed-2020-209567
  • Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976). 1990 Jan;15(1):11–14. doi: 10.1097/00007632-199001000-00004
  • Neubauer J, Kusel K, Knipe H, et al. Gertzbein and Robbins classification.Radiopaedia.org. [cited 2023 Nov 2]. doi: 10.53347/rID-8215
  • McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018 Jan 23;319(4):388–396. doi: 10.1001/jama.2017.19163
  • Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000.
  • Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011 Feb 10;342(feb10 2):d549. doi: 10.1136/bmj.d549
  • Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539–1558. doi: 10.1002/sim.1186
  • Fan Y, Du J, Zhang J, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit. 2017 Dec 16;23:5960–5968. doi: 10.12659/msm.905713
  • Fan Y, Peng Du J, Liu JJ, et al. Radiological and clinical differences among three assisted technologies in pedicle screw fixation of adult degenerative scoliosis. Sci Rep. 2018 Jan 17;8(1):890. doi: 10.1038/s41598-017-19054-7
  • Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. 2019 Feb;8:1–8. doi: 10.3171/2018.10.SPINE18487
  • Tian W, Fan M, Liu Y. Pedicle screw insertion in spine: a randomized controlled study for robot-assisted spinal surgery. EpiC Ser Health Sci. 2017 Jun 13;1:23–27.
  • Wang L, Li C, Wang Z, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up. J Robot Surg. 2023 Apr;17(2):473–485. doi: 10.1007/s11701-022-01442-5
  • Archavlis E, Amr N, Kantelhardt SR, et al. Rates of upper facet joint violation in minimally invasive percutaneous and open instrumentation: a comparative cohort study of different insertion techniques. J Neurol Surg A Cent Eur Neurosurg. 2018 Jan;79(1):1–8. doi: 10.1055/s-0037-1603631
  • Keric N, Eum DJ, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis. J Robot Surg. 2017 Mar;11(1):17–25. doi: 10.1007/s11701-016-0597-5
  • Keric N, Doenitz C, Haj A, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus. 2017 May;42(5):E11. doi: 10.3171/2017.2.FOCUS16552
  • Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013 Jan;72(Suppl 1):A12–A18. doi: 10.1227/NEU.0b013e318270d02c
  • Schatlo B, Molliqaj G, Cuvinciuc V, et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014 Jun;20(6):636–643. doi: 10.3171/2014.3.SPINE13714
  • Schatlo B, Martinez R, Alaid A, et al. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir (Wien). 2015 Oct;157(10):1819–1823; discussion 1823. doi: 10.1007/s00701-015-2535-0
  • Solomiichuk V, Fleischhammer J, Molliqaj G, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus. 2017 May;42(5):E13. doi: 10.3171/2017.3.FOCUS1710
  • Fayed I, Tai A, Triano M, et al. Robot-assisted percutaneous pedicle screw placement: evaluation of accuracy of the first 100 screws and comparison with cohort of fluoroscopy-guided screws. World Neurosurg. 2020 Nov;143:e492–e502. doi: 10.1016/j.wneu.2020.07.203
  • Guillotte A, LeBeau G, Alvarado A, et al. Feasibility of outpatient robot assisted minimally invasive transforaminal lumbar interbody fusion. N Am Spine Soc J. 2022 Dec 17;13:100192. doi: 10.1016/j.xnsj.2022.100192
  • Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013 Mar;22(3):661–666. doi: 10.1007/s00586-012-2499-1
  • Hu X, Lieberman IH. What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res. 2014 Jun;472(6):1839–1844. doi: 10.1007/s11999-013-3291-1
  • Huntsman KT, Ahrendtsen LA, Riggleman JR, et al. Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution. J Robot Surg. 2020 Feb;14(1):199–203. doi: 10.1007/s11701-019-00959-6
  • Jain D, Manning J, Lord E, et al. Initial single-institution experience with a novel robotic-navigation system for thoracolumbar pedicle screw and pelvic screw placement with 643 screws. Int J Spine Surg. 2019 Oct 31;13(5):459–463. doi: 10.14444/6060
  • Lee NJ, Zuckerman SL, Buchanan IA, et al. Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter, propensity-matched analysis of 2,800 screws and 372 patients. Spine J. 2021 Sep;21(9):1504–1512. doi: 10.1016/j.spinee.2021.05.015
  • Lee NJ, Buchanan IA, Zuckermann SL, et al. What is the comparison in robot time per screw, radiation exposure, robot abandonment, screw accuracy, and clinical outcomes between percutaneous and open robot-assisted short lumbar fusion?: A multicenter, propensity-matched analysis of 310 patients. Spine (Phila Pa 1976). 2022 Jan 1;47(1):42–48. doi: 10.1097/BRS.0000000000004132
  • Mao G, Gigliotti MJ, Myers D, et al. Single-surgeon direct comparison of O-arm neuronavigation versus mazor X robotic-guided posterior spinal instrumentation. World Neurosurg. 2020 May;137:e278–e285. doi: 10.1016/j.wneu.2020.01.175
  • Urakov TM, Chang KH, Burks SS, et al. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus. 2017 May;42(5):E4. doi: 10.3171/2017.2.FOCUS175
  • Hyun SJ, Kim KJ, Jahng TA, et al. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine (Phila Pa 1976). 2017 Mar 15;42(6):353–358. doi: 10.1097/BRS.0000000000001778
  • Kim HJ, Lee SH, Chang BS, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976). 2015 Jan 15;40(2):87–94. doi: 10.1097/BRS.0000000000000680
  • Kim HJ, Jung WI, Chang BS, et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot. 2017 Sep;13(3). doi: 10.1002/rcs.1779
  • Benech CA, Perez R, Benech F, et al. Navigated robotic assistance results in improved screw accuracy and positive clinical outcomes: an evaluation of the first 54 cases. J Robot Surg. 2020 Jun;14(3):431–437. doi: 10.1007/s11701-019-01007-z
  • Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-Arm, robotic guidance, or freehand technique: a comparative study. Spine (Phila Pa 1976). 2018 Mar 15;43(6):E373–E378. doi: 10.1097/BRS.0000000000002449
  • Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016 Mar;25(3):947–955. doi: 10.1007/s00586-015-3758-8
  • Molliqaj G, Schatlo B, Alaid A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus. 2017 May;42(5):E14. doi: 10.3171/2017.3.FOCUS179
  • Jiang B, Pennington Z, Azad TD, et al. Robot-assisted versus freehand instrumentation in short-segment lumbar fusion: experience with real-time image-guided spinal robot. World Neurosurg. 2020 Apr;136:e635–e645. doi: 10.1016/j.wneu.2020.01.119
  • Khan A, Meyers JE, Yavorek S, et al. Comparing next-generation robotic technology with 3-dimensional computed tomography navigation technology for the insertion of posterior pedicle screws. World Neurosurg. 2019 Mar;123:e474–e481. doi: 10.1016/j.wneu.2018.11.190
  • Khan A, Meyers JE, Siasios I, et al. Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve. Oper Neurosurg (Hagerstown). 2019 Jul 1;17(1):61–69. doi: 10.1093/ons/opy280
  • Liounakos JI, Khan A, Eliahu K, et al. Ninety-day complication, revision, and readmission rates for current-generation robot-assisted thoracolumbar spinal fusion surgery: results of a multicenter case series. J Neurosurg Spine. 2021 Nov 26;36(5):841–848. doi: 10.3171/2021.8.SPINE21330
  • National Heart, Lung and Blood Institute (NHLBI). Assessing your weight and health risk. 2023 [cited 2023 Nov 7th]. Available from: https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm
  • Reijneveld SA. Age in epidemiological analysis. J Epidemiol Community Health. 2003 Jun 1;57(6):397. doi: 10.1136/jech.57.6.397
  • Ong V, Swan AR, Sheppard JP, et al. A comparison of spinal robotic systems and pedicle screw accuracy rates: review of literature and meta-analysis. Asian J Neurosurg. 2022 Oct 18;17(4):547–556. doi: 10.1055/s-0042-1757628
  • Patel NA, Kuo CC, Pennington Z, et al. Robot-assisted percutaneous pedicle screw placement accuracy compared with alternative guidance in lateral single-position surgery: a systematic review and meta-analysis. J Neurosurg Spine. 2023 Jun 23;39(4):443–451. doi: 10.3171/2023.3.SPINE2329
  • Tarawneh AM, Salem KM. A systematic review and meta-analysis of randomized controlled trials comparing the accuracy and clinical outcome of pedicle screw placement using robot-assisted technology and conventional freehand technique. Global Spine J. 2021 May;11(4):575–586. doi: 10.1177/2192568220927713
  • Toossi N, Vardiman AB, Benech CA, et al. Factors affecting the accuracy of pedicle screw placement in robot-assisted surgery: a multicenter study. Spine (Phila Pa 1976). 2022 Dec 1;47(23):1613–1619. doi: 10.1097/BRS.0000000000004473

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.