1,683
Views
33
CrossRef citations to date
0
Altmetric
Original Article

Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna

, , , , , , & show all
Pages 1160-1167 | Received 30 Oct 2015, Accepted 20 Apr 2016, Published online: 07 Jun 2016

References

  • Abramoff MDM, Paulo J, Ram SJ. 2004. Image processing with ImageJ. Biophoton Int 11:36–42.
  • Adolfsson K, Schneider M, Hammarin G, Hacker U, Prinz CN. 2013a. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology 24:285101.
  • Adolfsson K, Persson H, Wallentin J, Oredsson S, Samuelson L, Tegenfeldt JO, et al. 2013b. Fluorescent nanowire heterostructures as a versatile tool for biology applications. Nano Lett 13:4728–32.
  • Artal MC, Holtz RD, Kummrow F, Alves OL, Umbuzeiro Gde A. 2013. The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. Environ Toxicol Chem 32:908–12.
  • Baumann J, Sakka Y, Bertrand C, Koser J, Filser J. 2014. Adaptation of the Daphnia sp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials. Environ Sci Pollut Res Int 21:2201–13.
  • Burns CW. 1969. Relation between filtering rate, temperature, and body size in 4 species of Daphnia. Limnol Oceanogr 14:693–700.
  • Dobrovolskaia MA, Patri AK, Zheng JW, Clogston JD, Ayub N, Aggarwal P, et al. 2009. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 5:106–17.
  • Edgington AJ, Petersen EJ, Herzing AA, Podila R, Rao A, Klaine SJ. 2014. Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna. Nanotoxicology 8:2–10.
  • Gallentoft L, Pettersson LM, Danielsen N, Schouenborg J, Prinz CN, Linsmeier CE. 2015. Size-dependent long-term tissue response to biostable nanowires in the brain. Biomaterials 42:172–83.
  • Gillis PL, Chow-Fraser P, Ranville JF, Ross PE, Wood CM. 2005. Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna. Aquat Toxicol 71:143–54.
  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC. 2011. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–90.
  • Li Y, Qian F, Xiang J, Lieber CM. 2006. Nanowire electronic and optoelectronic devices. Mater Today 9:18–27.
  • Lin S, Wang X, Ji Z, Chang CH, Dong Y, Meng H, et al. 2014. Aspect ratio plays a role in the hazard potential of CeO2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano 8:4450–64.
  • Linsmeier CE, Prinz CN, Pettersson LME, Caroff P, Samuelson L, Schouenborg J, et al. 2009. Nanowire biocompatibility in the brain – looking for a needle in a 3D stack. Nano Lett 9:4184–90.
  • Linsmeier CE, Wallman L, Faxius L, Schouenborg J, Bjursten LM, Danielsen N. 2008. Soft tissue reactions evoked by implanted gallium phosphide. Biomaterials 29:4598–604.
  • Mattsson K, Hansson LA, Cedervall T. 2015. Nano-plastics in the aquatic environment. Environ Sci Process Impacts 17:1712–21.
  • Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, Deng B. 2011. Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 30:981–7.
  • Nelson SM, Mahmoud T, Beaux M 2ND, Shapiro P, McIlroy DN, Stenkamp DL. 2010. Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomedicine 6:93–102.
  • Parks AN, Portis LM, Schierz PA, Washburn KM, Perron MM, Burgess RM, et al. 2013. Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ Toxicol Chem 32:1270–7.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–8.
  • Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF. 2009. A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28:2142–9.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–51.
  • Sanfins E, Augustsson C, Dahlback B, Linse S, Cedervall T. 2014. Size-dependent effects of nanoparticles on enzymes in the blood coagulation cascade. Nano Lett 14:4736–44.
  • Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, et al. 2013. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–94.
  • Schinwald A, Chernova T, Donaldson K. 2012. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9:47.
  • Silva RM, Xu J, Saiki C, Anderson DS, Franzi LM, Vulpe CD, et al. 2014. Short versus long silver nanowires: a comparison of in vivo pulmonary effects post instillation. Part Fibre Toxicol 11:52.
  • Stobbart RH, Keating J, Earl R. 1977. Study of Sodium Uptake by Water Flea Daphnia magna. Compar Biochem Physiol A 58:299–309.
  • Sun B, Wang X, Ji Z, Li R, Xia T. 2013. NLRP3 inflammasome activation induced by engineered nanomaterials. Small 9:1595–607.
  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. 2011. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–67.
  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–47.
  • Zhu XS, Zhu L, Chen YS, Tian SY. 2009. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanoparticle Res 11:67–75.