552
Views
25
CrossRef citations to date
0
Altmetric
Original Article

Sensory systems and ionocytes are targets for silver nanoparticle effects in fish

, , , , , , , , , , , & show all
Pages 1276-1286 | Received 15 Apr 2015, Accepted 09 Jun 2016, Published online: 18 Jul 2016

References

  • Andrews GK. 2000. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104
  • Arosio P, Ingrassia R, Cavadini P. 2009. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–99
  • Asharani P, Wu YL, Gong Z, Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102
  • Badawy AME, Luxton TP, Silver RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (pH, ionic strength and electrotype type) on the surface charge and aggregation of silver nanoparticle suspensions. Environ Sci Technol 44:1260–6
  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. 2012. Toxicity of silver nanoparticles – nanoparticle or silver ion? Toxicol Lett 208:286–92
  • Biswas M, Chan JY. 2010. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244:16–20
  • Bozzola JJ, Russell LD. 1999. Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning
  • Chen W, John J, Lin C, Lin H, Wu S, Chang C. 2004. Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat Toxicol 69:215–27
  • Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. 2006. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 294:482–96
  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. 2009. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–9
  • Choi O, Deng KK, Kim NJ, Ross L, Jr. Surampalli RY, Hu Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–74
  • Christian P, Von der Kammer F, Baalousha M, Hofmann T. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–43
  • Dobias J, Bernier-Latmani R. 2013. Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–6
  • Dymowska A, Hwang PP, Goss GG. 2012. Structure and function of ionocytes in the freshwater fish gill. Respir Physiol Neurobiol 184:282–92
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–39
  • Esaki M, Hoshijima K, Kobayashi S, Fukuda H, Kawakami K, Hirose S. 2007. Visualization in zebrafish larvae of Na + uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol-Regul Integr Comp Physiol 292:R470–80
  • Esaki M, Hoshijima K, Nakamura N, Munakata K, Tanaka M, Ookata K, et al. 2009. Mechanism of development of ionocytes rich in vacuolar-type H(+)-ATPase in the skin of zebrafish larvae. Dev Biol 329:116–29
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–31
  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. 2009. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–62
  • Froehlicher M, Liedtke A, Groh K, Neuhauss S, Segner H, Eggen R. 2009. Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95:307–19
  • Garner LV, Di Giulio RT. 2012. Glutathione transferase pi class 2 (GSTp2) protects against the cardiac deformities caused by exposure to PAHs but not PCB-126 in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 155:573–9
  • Gobba F. 2006. Olfactory toxicity: long-term effects of occupational exposures. Int Arch Occup Environ Health 79:322–31
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Griffitt RJ, Lavelle CM, Kane AS, Denslow ND, Barber DS. 2013. Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. Aquatic Toxicol 130:192–200
  • Harrison PM, Arosio P. 1996. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203
  • He X, Aker WG, Hwang HM. 2014. An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology 8:185–95
  • Higgins LG, Hayes JD. 2011. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metabol Rev 43:92–137
  • Hiroi J, Kaneko T, Uchida K, Hasegawa S, Tanaka M. 1998. Immunolocalization of vacuolar-type H+-ATPase in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae. Zool Sci 15:447–53
  • Hogstrand C, Galvez F, Wood CM. 1996. Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Environ Toxicol Chem 15:1102–8
  • Hogstrand C, Wood CM. 2009. Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–61
  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–22
  • Kashiwada S, Ariza ME, Kawaguchi T, Nakagame Y, Jayasinghe BS, Gärtner K, et al. 2012. Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. Environ Sci Technol 46:6278–87
  • Kasumyan AO, Döving KB. 2003. Taste preferences in fishes. Fish Fish 4:289–347
  • Kittler S, Greulich C, Diendorf J, Koìoller M, Epple M. 2010. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–54
  • Knörr-Wittmann C, Hengstermann A, Gebel S, Alam J, Müller T. 2005. Characterization of Nrf2 activation and heme oxygenase-1 expression in NIH3T3 cells exposed to aqueous extracts of cigarette smoke. Free Radic Biol Med 39:1438–48
  • Kobayashi M, Yamamoto M. 2005. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–94
  • Lin TY, Liao BK, Horng JL, Yan JJ, Hsiao CD, Hwang PP. 2008. Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na +  uptake in zebrafish H+-ATPase-rich cells. Am J Physiol-Cell Physiol 294:C1250–60
  • Linbo TL, Stehr CM, Incardona JP, Scholz NL. 2006. Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fish. Environ Toxicol Chem 25:597–603
  • Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet J, Vallet-Regi M, et al. 2014. The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B 2:1634–43
  • Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Jefferson B, Lowry GV. 2014. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–12
  • Ma R, Lecard C, Marinakos SM, Cheng Y, Liu J, Michel FM, et al. 2011. Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–9
  • Marambio-Jones C, Hoek EMV. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–51
  • McNeil PL, Boyle D, Henry TB, Handy RD, Sloman KA. 2014. Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquat Toxicol 152:318–23
  • Mitrano DM, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP. 2014. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ Sci Nano 1:248–59
  • Motohashi H, Yamamoto M. 2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–57
  • Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–53
  • Mukaigasa K, Nguyen LT, Li L, Nakajima H, Yamamoto M, Kobayashi M. 2012. Genetic evidence of an evolutionarily conserved role for Nrf2 in the protection against oxidative stress. Mol Cell Biol 32:4455–61
  • Nakajima H, Nakajima-Takagi Y, Tsujita T, Akiyama SI, Wakasa T, Mukaigasa K, et al. 2011. Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles. PloS One 6:e26884
  • Neves JV, Wilson JM, Rodrigues PN. 2009. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. Dev Comp Immunol 33:848–57
  • Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, Yamamoto M. 2008. Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem 283:33554–62
  • Orino K, Watanabe K. 2008. Molecular, physiological and clinical aspects of the iron storage protein ferritin. Vet J 178:191–201
  • Osborne OJ, Johnston B, Moger J, Baalousha M, Lead J, Kudoh T, Tyler C. 2013. Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology 7:1315–24
  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. 2011. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100
  • Piccino F, Gottschalk F, Seeger S, Nowack B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11
  • Pinto E, Sigaud‐kutner T, Leitao MA, Okamoto OK, Morse D Colepicolo P. 2003. Heavy metal induced oxidative stress in Algae 1. J Phycol 39:1008–18
  • Ponka P, Beaumont C Richardson DR. 1998. Function and regulation of transferrin and ferritin. Semin Hematol 35:35–54
  • Poss KD, Tonegawa S. 1997. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94:10919–24
  • Ringwood AH, McCarthy M, Bates TC, Carroll DL. 2010. The effects of silver nanoparticles on oyster embryos. Mar Environ Res 69:S49–51
  • Romer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR. 2011. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218:4226–33
  • Sadler KC, Krahn KN, Gaur NA, Ukomadu C. 2007. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104:1570–5
  • Sanchez W, Palluel O, Meunier L, Coquery M, Porcher JM, Aït-Aïssa S. 2005. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–83
  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, et al. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–34
  • Srikanth K, Pereira E, Duarte AC, Ahmad I. 2013. Glutathione and its dependent enzymes modulatory responses to toxic metals and metalloids in fish-a review. Environ Sci Pollut Res 20:2133–49
  • Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ. 2008. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283:8984–94
  • Timme-Laragy AR, Karchner SI, Hahn ME. 2012. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental toxicology. Methods Mol Biol 889:51–71
  • Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40
  • van Aerle R, Lange A, Moorhouse A, Paszkiewicz KH, Ball K, Johnston BD, et al. 2013. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–14
  • van Trump WJ, McHenry MJ. 2008. The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211:2105–15
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, et al. 2009. Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–38
  • Wood CM, Playle RC, Hogstrand C. 1999. Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18:71–83
  • Xin Q, Rotchell JM, Cheng J, Yi J, Zhang Q. 2015. Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35:1481–92
  • Zhang W, Yao Y, Sullivan N, Chen Y. 2011. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45:4422–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.