434
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Respiratory toxicity and immunotoxicity evaluations of microparticle and nanoparticle C60 fullerene aggregates in mice and rats following nose-only inhalation for 13 weeks

, , , , , , , , , & show all
Pages 1458-1468 | Received 11 Feb 2016, Accepted 18 Aug 2016, Published online: 30 Sep 2016

References

  • Akila P, Prashant V, Suma MN, Prashant SN, Chaitra TR. 2012. CD163 and its expanding functional repertoire. Clin Chim Acta 413:669–74
  • Auttachoat W, Germolec DR, Collins BJ, Luebke RW, White KL, Jr Guo TL. 2009. Immunotoxicological profile of chloroform in female B6C3F1 mice when administered in drinking water. Drug Chem Toxicol 32:77–87
  • Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, et al. 2008. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 101:122–31
  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, et al. 2007. Meeting report: hazard assessment for nanoparticles–report from an interdisciplinary workshop. Environ Health Perspect 115:1654–9
  • Baran CP, Opalek JM, McMaken S, Newland CA, O'Brien JM, Hunter MG, et al. 2007. Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 176:78–89
  • Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M, et al. 2013. Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharm 65:119–25
  • Byrne JD, Baugh JA. 2008. The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med 11:43–50
  • Cabañas C, Sanchez-Madrid F. 1999. CD11b (leukocyte integrin CR3 alpha subunit). J Biol Reg Homeos Ag 13:130–3
  • Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, Bonner JC. 2010. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43:142–51
  • Chen HH, Yu C, Ueng TH, Chen S, Chen BJ, Huang KJ, Chiang LY. 1998a. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 26:143–51
  • Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF. 1998b. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci USA 95:10809–13
  • Dijkstra CD, Döpp EA, Joling P, Krall G. 1985. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–99
  • Dörger M, Münzing S, Allmeling A, Messmer K, Krombach F. 2001. Phenotypic and functional differences between rat alveolar, pleural, and peritoneal macrophages. Exp Lung Res 27:65–76
  • Ema M, Tanaka J, Kobayashi N, Naya M, Endoh S, Maru J, et al. 2012. Genotoxicity evaluation of fullerene C60 nanoparticles in a comet assay using lung cells in intratracheally instilled rats. Regul Toxicol Pharm 62:419–24
  • EU. 2011. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union L 275: 38–40
  • Fabriek BO, Dijkstra CD, van den Berg TK. 2005. The macrophage scavenger receptor CD163. Immunobiology 210:153–60
  • Fan ST, Edgington TS. 1993. Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol 150:2972–80
  • FDA. 2011. Considering whether an FDA-regulated product involves the application of nanotechnology. Guidance for Industry (Draft). Available at: www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htm. Accessed on 27 May 2014
  • Ferin J, Oberdörster G, Penney DP, Soderholm SC, Gelein R, Piper HC. 1990. Increased pulmonary toxicity of ultrafine particles? I. Particle clearance, translocation, morphology. J Aerosol Sci 21:381–4
  • Fujita K, Morimoto Y, Ogami A, Toshihiko M, Tanaka I, Shimada M, et al. 2009. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258:47–55
  • Garn H, Siese A, Stumpf S, Wensing A, Renz H, Gemsa D. 2006. Phenotypical and functional characterization of alveolar macrophage subpopulations in teh lungs of NO2-exposed rats. Respir Res 7:4
  • Guo TL, McCay JA, Brown RD, Musgrove DL, Butterworth L, Munson AE, et al. 2000. Glycidol modulation of the immune responses in female B6C3F1 mice. Drug Chem Toxicol 23:433–57
  • Hasegawa M. 1999. Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fibrosis. Clin Exp Immunol 117:159–65
  • Jerne NK, Nordin AA, Henry C. 1963. The agar plaque technique for recognizing antibody-producing cells. In: Amos B, Koprowski H, eds. Cell-Bound Antibodies. Philadelphia: Wistar Institute Press, 109–125
  • Jiang Y, Beller DI, Frendl G, Graves DT. 1992. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J Immunol 148:2423–8
  • Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V. 2010. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114:162–82
  • Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. 1985. C60: buckminsterfullerene. Nature 318:162–3
  • Li XC, Miyasaka M, Issekutz T. 1998. Blood monocyte migration to acute lung inflammation involves both CD11/CD18 and very late activation antigen-4-dependent and independent pathways. J Immunol 161:6258–64
  • Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B. 1994. Monocyte chemotactic proteins MCP-1, MCP-2, and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. Faseb J 8:1055–60
  • Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B. 1996. Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–7
  • Luster MI, Portier C, Pait DG, White KL, Jr., Gennings C, Munson AE, Rosenthal GJ. 1992. Risk assessment in immunotoxicology I: Sensitivity and predictability of immune tests. Fundam Appl Toxicol 18:200–10
  • Maus U, Herold S, Muth H, Maus R, Ermert L, Ermert M, et al. 2001. Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14. Am J Physiol Lung Cell Mol Physiol 280:L58–68
  • Menten P, Wuyts A, Van Damme J. 2002. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13:455–81
  • Muller J, Huaux F, Moreau N, Mission P, Heilier JF, Delos M, et al. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–31
  • National Toxicology Program (NTP). 2003. Nanoscale materials. Nominations to the Testing Program, Nominations in Review 2003. Available at: http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumPdf/Nanoscale_508.pdf. Accessed on 5 September 2014
  • National Toxicology Program (NTP). 2009. Evaluation Criteria for Immune System Toxicity. Available at: http://ntp.niehs.nih.gov/testing/types/criteria/. Accessed on 26 July 2016
  • Oberdörster G, Ferin J, Finkelstein G, Wade P, Corson N. 1990. Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies.. J Aerosol Sci 21:384–7
  • Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K. 2010. Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244:226–33
  • Polfliet MMJ, Fabriek BO, Daniëls WP, Dijkstra CD, van den Berg TK. 2006. The rat macrophage scavenger receptor CD163: expression, regulation, and role in inflammatory mediator production. Immunobiology 211:419–25
  • Rezzonico R, Imbert V, Chicheportiche R, Dayer JM. 2001. Ligation of CD11b and CD11c beta(2) integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta production in primary human monocytes through a pathway dependent on nuclear factor-kappaB. Blood 97:2932–40
  • Roursgaard M, Poulsen SS, Kepley CL, Hammer M, Nielsen GD, Larsen ST. 2008. Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice. Basic Clin Pharmacol Toxicol 103:386–8
  • Sayers BC, Walker NJ, Roycroft JH, Germolec DR, Baker GL, Clark ML, et al. 2016. Lung deposition and clearance of microparticle and nanoparticle C60 fullerene aggregates in B6C3F1 mice and Wistar Han rats following nose-only inhalation for 13 weeks. Toxicology 339:87–96
  • Sayes CM, Marchione AA, Reed KL, Warheit DB. 2007. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–406
  • Sibille Y, Reynolds HY. 1990. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141:471–501
  • Smith DC, Smith MJ, White KL. 2010. Systemic immunosuppression following a single pharyngeal aspiration of 1,2:5,6-dibenzanthracene in female B6C3F1 mice. J Immunotoxicol 7:219–31
  • Smith MJ, Germolec DR, Frawley RP, White KL. 2013a. Immunomodulatory effects of black cohosh (Actaea racemosa) extract in female B6C3F1/N mice. Toxicology 308:146–57
  • Smith MJ, McLoughlin CE, White KL, Germolec DR. 2013b. Evaluating the adverse effects of nanomaterials on the immune system with animal models. In: Dobrovolskaia MA, McNeil SE, eds. Handbook of Immunological Properties of Engineered Nanomaterials. New Jersey: World Scientific, 639–670
  • Smith RE, Strieter RM, Zhang K, Phan SH, Standiford TJ, Lukacs NW, Kunkel SL. 1995. A role for C-C chemokines in fibrotic lung disease. J Leukoc Biol 57:782–7
  • Stern ST, McNeil SE, Patri AK, Dobrovolskaia MA. 2006. Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. In: Amiji MM, ed. Nanotechnology for Cancer Therapy. CRC Press, 105–137
  • Temple L, Kawabata TT, Munson AE, White KL. Jr., 1993. Comparison of ELISA and plaque-forming cell assays for measuring the humoral immune response to SRBC in rats and mice treated with benzo[a]pyrene or cyclophosphamide. Fundam Appl Toxicol 21:412–19
  • Terrones H, Mackay AL. 1992. The geometry of hypothetical curved graphite structures. Carbon 30:1251–60
  • Uguccioni M, D'Apuzzo M, Loetscher M, Dewald B, Baggiolini M. 1995. Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol 25:64–8
  • Weber KS, Klickstein LB, Weber C. 1999. Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains. Mol Biol Cell 10:861–73
  • White KL, Musgrove DL, Brown RD. 2010. The Sheep Erythrocyte T-Dependent Antibody Response (TDAR). Methods Mol Biol 598:173–84
  • Yamashita K, Sakai M, Takemoto N, Tsukimoto M, Uchida K, Yajima H, et al. 2009. Attenuation of delayed-type hypersensitivity by fullerene treatment. Toxicology 261:19–24
  • Zogovic NS, Nikolic NS, Vranjes-Djuric SD, Harhaji LM, Vucicevic LM, Janjetovic KD, et al. 2009. Opposite effects of nanocrystalline fullerene (C(60)) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancer-promoting activity of C(60). Biomaterials 30:6940–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.