575
Views
70
CrossRef citations to date
0
Altmetric
Original Article

RNA-binding proteins are a major target of silica nanoparticles in cell extracts

, , , , , , , , , , , , , , , , & show all
Pages 1555-1564 | Received 21 Jul 2016, Accepted 29 Sep 2016, Published online: 25 Oct 2016

References

  • Abdelhamid MAA, Motomura K, Ikeda T, Ishida T, Hirota R, Kuroda A. 2014. Affinity purification of recombinant proteins using a novel silica-binding peptide as a fusion tag. Appl Microbiol Biotechnol 98: 5677–84
  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. 2009. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Del Rev 61:428–37
  • Alexa A, Rahnenfuhrer J. 2010. topGO: Enrichment analysis for Gene Ontology
  • Anderson NL, Anderson NG. 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–67
  • Armengaud J. 2013. Microbiology and proteomics, getting the best of both worlds!. Environ Microbiol 15:12–23
  • Bellezza F, Cipiciani A, Latterini L, Posati T, Sassi P. 2009. Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites. Langmuir 25:10918–24
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statis Soc Series B 57:289–300
  • Berlow RB, Dyson HJ, Wright PE. 2015. Functional advantages of dynamic protein disorder. FEBS Lett 589:2433–40
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54
  • Brunner E, Munzel U. 2000. The nonparametric Behrens‐Fisher problem: asymptotic theory and a small‐sample approximation. Biometric J 42:17–25
  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, et al. 2012. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–406
  • Chen M, Mikecz, von A. 2005. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305:51–62
  • Cheng H, Zhang K, Libera JA, Olvera de la Cruz M, Bedzyk MJ. 2006. Polynucleotide Adsorption to Negatively Charged Surfaces in Divalent Salt Solutions. Biophys J 90:1164–74
  • Dedieu A, Gaillard JC, Pourcher T, Darrouzet E, Armengaud J. 2011. Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J Biol Chem 286:259–69
  • Fenoglio I, Fubini B, Ghibaudi EM, Turci F. 2011. Multiple aspects of interacts of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 63:1186–209
  • Fischer NO, McIntosh CM, Simard JM, Rotello VM. 2002. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA 99:5018–23
  • Fischer NO, Verma A, Goodman CM, Simard JM, Rotello VM. 2003. Reversible ‘Irreversible’ Inhibition of Chymotrypsin Using Nanoparticle Receptors. J Am Chem Soc 125:13387–91
  • Fisher BM, Schultz LW, Raines RT. 1998. Coulombic effects of remote subsites on the active site of ribonuclease A †. Biochemistry 37:17386–401
  • Gallie DR. 1998. A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216:1–11
  • Gregori J, Sanchez A, Villanueva J. 2013. msmsTests: LC-MS/MS Differential Expression Tests
  • Gregori J, Villarreal L, Méndez O, Sanchez A, Baselga J, Villanueva J. 2012. Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. J Proteomics 75:3938–51
  • Hartmann EM, Allain F, Gaillard JC, Pible O, Armengaud J. 2014. Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol Biol (Clifton, NJ) 1197:275–85
  • Hinnebusch AG. 2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31:553–62
  • Hui W, Gel YR, Gastwirth JL. 2008. lawstat: an R package for law, public policy and biostatistics. J Stat Softw 28
  • Ikeda T, Kuroda A. 2011. Why does the silica-binding protein “Si-tag” bind strongly to silica surfaces? Implications of conformational adaptation of the intrinsically disordered polypeptide to solid surfaces. Colloids Surfaces B 86:359–63
  • Klein G, Devineau S, Aude JC, Boulard Y, Pasquier H, Labarre J, et al. 2016. Interferences of silica nanoparticles in green fluorescent protein folding processes. Langmuir 32:195–202
  • Laferté A, Favry E, Sentenac A, Riva M, Carles C, Chédin S. 2006. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Develop 20:2030–40
  • Lee CS, Belfort G. 1989. Changing activity of ribonuclease A during adsorption: a molecular explanation. Proc Natl Acad Sci USA 86:8392–6
  • Liu H, Sadygov RG, Yates JR. 2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–201
  • Lunde BM, Moore C, Varani G. 2007. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–90
  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. 2007. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134-135:167–74
  • Mathé C, Devineau S, Aude JC, Lagniel G, Chédin S, Legros V, et al. 2013. Structural determinants for protein adsorption/non-adsorption to silica surface. PloS One 8: e81346
  • Mortimer RK, Johnston JR. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113: 35–43
  • Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. understanding biophysicochemical interactions atthe nano–bio interface. Nature Pub Group 8:543–57
  • Nguyen TH, Elimelech M. 2007. Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 8:24–32
  • Norde W. 2008. My voyage of discovery to proteins in flatland and beyond. Colloids Surf B Biointerfaces 61:1–9
  • Peng M, Taouatas N, Cappadona S, van Breukelen B, Mohammed S, Scholten A, Heck AJR. 2012. Protease bias in absolute protein quantitation. Nature Methods 9:524–5
  • Piccinno F, Gottschalk F, Seeger S, Nowack B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1109
  • Poeckh T, Lopez S, Fuller AO, Solomon MJ, Larson RG. 2008. Adsorption and elution characteristics of nucleic acids on silica surfaces and their use in designing a miniaturized purification unit. Anal Biochem 373: 253–62
  • PONDR, ed. 2016. Predictor Of Naturally Disordered Regions. Molecular Kinetics Inc., USA [Online]. Available at: http://pondr.com. Accessed 13 June 2016
  • R Core Team. 2016. R: A Language and Environment for Statistical computing. Vienna, Austria
  • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26:139–40
  • Ryter JM, Schultz SC. 1998. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 17:7505–13
  • Sanfins E, Dairou J, Hussain S, Busi F, Chaffotte AF, Rodrigues-Lima F, Dupret JM. 2011. Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation of arylamine n-acetyltransferase enzymes. ACS Nano 5:4504–11
  • Saptarshi SR, Duschl A, Lopata AL. 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:1
  • Shang W, Nuffer JH, Dordick JS, Siegel RW. 2007. Unfolding of ribonuclease a on silica nanoparticle surfaces. Nano Lett 7:1991–1995
  • Shrivastava S, Nuffer JH, Siegel RW, Dordick JS. 2012. Position-specific chemical modification and quantitative proteomics disclose protein orientation adsorbed on silica nanoparticles. Nano Lett 12:1583–1587
  • Takahama K, Oyoshi T. 2013. Specific binding of modified RGG domain in TLS/FUS to G-quadruplex RNA: tyrosines in RGG domain recognize 2′-OH of the riboses of loops in G-quadruplex. J Am Chem Soc 135:18016–18019
  • Taniguchi K, Nomura K, Hata Y, Nishimura T, Asami Y, Kuroda A. 2007. The Si-tag for immobilizing proteins on a silica surface. Biotechnol Bioeng 96:1023–1029
  • Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. 2011. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167
  • Thandapani P, O’Connor TR, Bailey TL, Richard S. 2013. Defining the RGG/RG Motif. Molecular Cell 50:613–623
  • Tosaka R, Yamamoto H, Ohdomari I, Watanabe T. 2010. Adsorption mechanism of ribosomal protein L2 onto a silica surface: a molecular dynamics simulation study. Langmuir 26:9950–9955
  • Trapp J, Armengaud J, Pible O, Gaillard JC, Abbaci K, Habtoul Y, et al. 2015. Proteomic investigation of male Gammarus fossarum, a freshwater crustacean, in response to endocrine disruptors. J Proteome Res 14:292–303
  • Uversky VN. 2011. Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103
  • Vandeventer PE, Lin JS, Zwang TJ, Nadim A, Johal MS, Niemz A. 2012. Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. J Phys Chem B 116:5661–5670
  • Vertegel AA, Siegel RW, Dordick JS. 2004. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807
  • Vuković L, Koh HR, Myong S, Schulten K. 2014. Substrate recognition and specificity of double-stranded RNA binding proteins. Biochemistry 53:3457–3466
  • Walkey CD, Chan WCW. 2012. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799
  • Washburn MP, Wolters D, Yates JR. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol 19:242–247
  • Zoungrana T, Findenegg G, Norde W. 1997. Structure, stability, and activity of adsorbed enzymes. J Colloid Interface Sci 190:437–448

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.