217
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation

, , &
Pages 112-122 | Received 22 Sep 2016, Accepted 20 Dec 2016, Published online: 11 Jan 2017

References

  • Aragon M, Erdely A, Bishop L, Salmen R, Weaver J, Liu J, et al. 2016. MMP-9-dependent serum-borne bioactivity caused by multiwalled carbon nanotube exposure induces vascular dysfunction via the CD36 scavenger receptor. Toxicol Sci 150:488–98.
  • Baenzige N, Brodie GN, Majerus PW. 1971. Thrombin-sensitive protein of human platelet membranes. Proc Nat Acad Sci USA 68:240.
  • Bagher P, Polo-Parada L, Segal SS. 2011. Microiontophoresis and micromanipulation for intravital fluorescence imaging of the microcirculation. J Vis Exp
  • Bauer EM, Qin Y, Miller TW, Bandle RW, Csanyi G, Pagano PJ, et al. 2010. Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovasc Res 88:471–81.
  • Bearden SE, Segal SS. 2004. Motor nerve distribution determines feed artery control: evidence from mouse gluteus maximus muscle. FASEB J 18:Abst. 437.4-Abst. 437.4.
  • Bihari P, Holzer M, Praetner M, Fent J, Lerchenberger M, Reichel CA, et al. 2010. Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269:148–54.
  • Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, et al. 2013. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS nano GO consortium. Environ Health Persp 121:676–82.
  • Borm PJA, Mueller-Schulte D. 2006. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond) 1:235–49.
  • Boulanger CM. 1999. Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol 31:39–49.
  • Brown EJ, Frazier WA. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130–5.
  • Cai H, Harrison DG. 2000. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–4.
  • Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, et al. 2014. Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE(/) mice and cultured endothelial cells. Toxicol Sci 138:104–16.
  • Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. 1992. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–5.
  • Chen JT, Sun HQ, Wang WL, Xu WM, He Q, Shen S, et al. 2015. Polyethylene glycol modification decreases the cardiac toxicity of carbonaceous dots in mouse and zebrafish models. Acta Pharmacol Sin 36:1349–55.
  • Cho S. 2012. CD36 as a therapeutic target for endothelial dysfunction in stroke. Curr Pharm Des 18:3721–30.
  • Choi KY, Kim DB, Kim MJ, Kwon BJ, Chang SY, Jang SW, et al. 2012. Higher plasma thrombospondin-1 levels in patients with coronary artery disease and siabetes Mellitus. Korean Circulation Journal 42:100–6.
  • Christophersen DV, Jacobsen NR, Andersen MHG, Connell SP, Barfod KK, Thomsen MB, et al. 2016. Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology 371:29–40.
  • Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW. 2011. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects. Int J Nanomed 6:2821–35.
  • Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, et al. 2010. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology 272:39–45.
  • Fleming I, Bauersachs J, Busse R. 1997. Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res 34:165–74.
  • Flurkey K, Currer J, Harrison D. 2007. The mouse in aging research. In: James G. Fox, Muriel T. Davisson, Fred W. Quimby, Stephen W. Barthold, Christian E. Newcomer and Abigail L. Smith, eds. The Mouse in Biomedical Research. 2nd ed. Burlington, MA: Elsevier Inc.
  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. 2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Persp 115:403–9.
  • Han SG. 2016. Effects of multi-walled carbon nanotubes in the lungs and aortas of ApoE-deficient mice fed a normal diet. J Nanosci Nanotechnol 16:8019–24.
  • Inagami T, Naruse M, Hoover R. 1995. Endothelium as an endocrine organ. Annu Rev Physiol 57:171–89.
  • Isenberg JS, Hyodo F, Matsumoto KI, Romeo MJ, Abu-Asab M, Tsokos M, et al. 2007. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109:1945–52.
  • Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD. 2006a. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281:26069–80.
  • Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD. 2005. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Nat Acad Sci USA 102:13141–6.
  • Isenberg JS, Wink DA, Roberts DD. 2006b. Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovasc Res 71:785–93.
  • Jackson DN, Segal SS. 2006. Sex and aging interact to modulate the rapid onset of arteriolar dilation in mouse skeletal muscle. FASEB J 20:A271.
  • Kong P, Gonzalez-Quesada C, Li N, Cavalera M, Lee DW, Frangogiannis NG. 2013. Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am J Physiol-Endocrinol Metabol 305:E439–50.
  • Liu X, Sun JA. 2010. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappa B pathways. Biomaterials 31:8198–209.
  • Louro H, Tavares A, Vital N, Costa PM, Alverca E, Zwart E, et al. 2014. Integrated approach to the in vivo genotoxic effects of a titanium dioxide nanomaterial using LacZ plasmid-based transgenic mice. Environ Mol Mutagen 55:500–9.
  • Matsuo Y, Tanaka M, Yamakage H, Sasaki Y, Muranaka K, Hata H, et al. 2015. Thrombospondin 1 as a novel biological marker of obesity and metabolic syndrome. Metabol Clin Exp 64:1490–9.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang LY, Battelli LA, Friend S, et al. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8:11.
  • Miller TW, Isenberg JS, Roberts DD. 2010. Thrombospondin-1 is an inhibitor of pharmacological activation of soluble guanylate cyclase. Br J Pharmacol 159:1542–7.
  • Morimoto Y, Horie M, Kobayashi N, Shinohara N, Shimada M. 2013. Inhalation toxicity assessment of carbon-based nanoparticles. Acc Chem Res 46:770–81.
  • Nakai K, Itoh C, Kawazoe K, Miura Y, Sotoyanagi H, Hotta K, et al. 1995. Concentration of soluble vascular cell-adhesion molecule-1 (VCAM-1) correlated with expression of VCAM-1 messenger-RNA in the human atherosclerotic aorta. Coron Artery Dis 6:497–502.
  • Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R. 1998. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–51.
  • Narizhneva NV, Razorenova OV, Podrez EA, Chen JH, Chandrasekharan UM, Dicorleto PE, et al. 2005. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium. FASEB J 19:1158+.
  • Nemmar A, Hoet PHM, Vandervoort P, Dinsdale D, Nemery B, Hoylaerts MF. 2007. Enhanced peripheral thrombogenicity after lung inflammation is mediated by platelet-leukocyte activation: role of P-selectin. J Thromb Haemost 5:1217–26.
  • Nurkiewicz TR, Porter DW, Barger M, Castranova V, Boegehold MA. 2004. Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Persp 112:1299–306.
  • Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, et al. 2009. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110:191–203.
  • Obrien KD, Allen MD, Mcdonald TO, Chait A, Harlan JM, Fishbein D, et al. 1993. Vascular cell-adhesion molecule-1 is expressed in human coronary atherosclerotic plaques – implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92:945–51.
  • Panza JA, Quyyumi AA, Brush JE, Epstein SE. 1990. Abnormal endothelium-dependent vascular relaxation in patients with essential-hypertension. New Engl J Med 323:22–7.
  • Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V. 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2:144–54.
  • Porter DW, Hubbs AF, Chen BT, Mckinney W, Mercer RR, Wolfarth MG, et al. 2013. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 7:1179–94.
  • Porter DW, Hubbs AF, Mercer RR, Wu NQ, Wolfarth MG, Sriram K, et al. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–47.
  • Rao GVS, Tinkle S, Weissman DN, Antonini JM, Kashon ML, Salmen R, et al. 2003. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health – Part a 66:1441–52.
  • Roberts DD, Miller TW, Rogers NM, Yao MY, Isenberg JS. 2012. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol 31:162–9.
  • Schachinger V, Britten MB, Zeiher AM. 2000. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–906.
  • Shaul PW. 2003. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol (Lond) 547:21–33.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:L552–65.
  • Sinkler SY, Segal SS. 2014. Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle. Am J Physiol Heart Circ Physiol 307:H830–9.
  • Smadja DM, D'audigier C, Bieche I, Evrard S, Mauge L, Dias JV, et al. 2011. Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arterioscler Thromb Vasc Biol 31:551–9.
  • Snyder-Talkington BN, Schwegler-Berry D, Castranova V, Qian Y, Guo NL. 2013. Multi-walled carbon nanotubes induce human microvascular endothelial cellular effects in an alveolar-capillary co-culture with small airway epithelial cells. Part Fibre Toxicol 10:14.
  • Stapleton PA, Goodwill AG, James ME, Frisbee JC. 2007. Altered mechanisms of endothelium-dependent dilation in skeletal muscle arterioles with genetic hypercholesterolemia. Am J Physiol Regul Integr Comp Physiol 293:R1110–9.
  • Stapleton PA, Mcbride CR, Yi J, Nurkiewicz TR. 2015. Uterine microvascular sensitivity to nanomaterial inhalation: an in vivo assessment. Toxicol Appl Pharmacol 288:420–8.
  • Stapleton PA, Minarchick VC, Cumpston AM, Mckinney W, Chen BT, Sager TM, et al. 2012. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 13:13781–803.
  • Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. 1996. Obesity/insulin resistance is associated with endothelial dysfunction – implications for the syndrome of insulin resistance. J Clin Invest 97:2601–10.
  • Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:1–15.
  • Suzuki Y, Tada-Oikawa S, Hayashi Y, Izuoka K, Kataoka M, Ichikawa S, et al. 2016. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction. Part Fibre Toxicol 13:11.
  • Thompson LC, Frasier CR, Sloan RC, Mann EE, Harrison BS, Brown JM, et al. 2014. Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology 8:38–49.
  • Thompson LC, Holland NA, Snyder RJ, Luo B, Becak DP, Odom JT, et al. 2016. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. Am J Physiol Lung Cell Mol Physiol 310:L142–54.
  • Varma V, Yao-Borengasser A, Bodles AM, Rasouli N, Phanavanh B, Nolen GT, et al. 2008. Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance. Diabetes 57:432–9.
  • Wight TN, Raugi GJ, Mumby SM, Bornstein P. 1985. Light microscopic immunolocation of thrombospondin in human-tissues. J Histochem Cytochem 33:295–302.
  • Yamawaki H, Iwai N. 2006. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 290:1495–1502.
  • Zhang L, Wang X, Miao Y, Chen Z, Qiang P, Cui L, et al. 2016. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy. J Hazard Mater 304:186–95.
  • Zhu MT, Wang B, Wang Y, Yuan L, Wang HJ, Wang M, et al. 2011. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203:162–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.