662
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans

, ORCID Icon, , ORCID Icon, &
Pages 647-657 | Received 11 Jan 2017, Accepted 09 Jun 2017, Published online: 04 Jul 2017

References

  • Aardema MJ, Macgregor JT. 2002. Toxicology and genetic toxicology in the new era of ‘toxicogenomics’: impact of ‘-omics’ technologies. Mutat Res 499:13–25.
  • Ahn J-M, Eom H-J, Yang X, Meyer JN, Choi J. 2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–52.
  • Asharani PV, Hande MP, Valiyaveettil S. 2009. Anti-proliferative activity of silver nanoparticles. Bmc Cell Biol 10:65.
  • Benseny-Cases N, Klementieva O, Cotte M, Ferrer I, Cladera J. 2014. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human alzheimer disease brains. Anal Chem 86:12047–54.
  • Chatterjee N, Eom HJ, Choi J. 2014. Effects of silver nanoparticles on oxidative DNA damage–repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ Mol Mutagen 55:122–33.
  • Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. 2013. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 5:18.
  • Chen X, Mccue HV, Wong SQ, Kashyap SS, Kraemer BC, Barclay JW, et al. 2015. Ethosuximide ameliorates neurodegenerative disease phenotypes by modulating DAF-16/FOXO target gene expression. Mol Neurodegeneration 10:51.
  • Elingarami S, Li X, He N. 2013. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research. J Nanosci Nanotechnol 13:4539–51.
  • Frens G. 1973. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–2.
  • Geppert M, Hohnholt MC, Nürnberger S, Dringen R. 2012. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomaterialia 8:3832–9.
  • Gonzalez-Moragas L, Roig A, Laromaine A. 2015a. C. elegans as a tool for in vivo nanoparticle assessment. Adv Colloid Interface Sci 219:10–26.
  • Gonzalez-Moragas L, Yu S-M, Carenza E, Laromaine A, Roig A. 2015b. Protective effects of bovine serum albumin on superparamagnetic iron oxide nanoparticles evaluated in the nematode Caenorhabditis elegans. ACS Biomater Sci Eng 1:1129–38.
  • Gumienny TL, Savage-Dunn C. 2013. TGF-β signaling in C. elegans. In: WormBook, ed. The C. elegans Research Community. WormBook. doi/10.1895/wormbook.1.22.2.
  • Helvenstein M, Stanicki D, Laurent S, Blankert B. 2015. Interaction between iron oxide nanoparticles and HepaRG cells: a preliminary in vitro evaluation. J Nanomater 2015:9.
  • Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. 2016. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 44:D774–80.
  • Huang C-C, Aronstam RS, Chen D-R, Huang Y-W. 2010. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in Vitro 24:45–55.
  • Huang Da W, Sherman BT, Lempicki RA. 2009a. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13.
  • Huang Da W, Sherman BT, Lempicki RA. 2009b. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57.
  • Iavicoli I, Leso V, Schulte PA. 2016. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol Appl Pharmacol 299:112–24.
  • Kim SW, Nam S-H, An Y-J. 2012. Interaction of Silver Nanoparticles with Biological Surfaces of Caenorhabditis elegans. Ecotoxicol Environmen Safety 77:64–70.
  • Krug HF. 2014. Nanosafety research-are we on the right track? Angewandte Chemie-Int Ed 53:12304–19.
  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. 2008. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–110; erratum 2010;110:2574.
  • Lehner B. 2013. Genotype to phenotype: lessons from model organisms for human genetics. Nat Rev Genet 14:168–78.
  • Li L, Wan T, Wan M, Liu B, Cheng R, Zhang RY. 2015. The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol Int 39:531–9.
  • Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. 2012a. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. Journal of Hazardous Materials 219:221–30.
  • Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. 2012b. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater 219-220:221–30.
  • Lim D, Roh J-Y, Eom H-J, Choi J-Y, Hyun J, Choi J. 2012. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–92.
  • Liu G, Gao JH, Ai H, Chen XY. 2013. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–45.
  • Maurer LL, Yang X, Schindler AJ, Taggart RK, Jiang C, Hsu-Kim H, et al. 2016. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology 10:831–5.
  • Merlot AM, Kalinowski DS, Richardson DR. 2014. Unraveling the mysteries of serum albumin—more than just a serum protein. Front Physiol 5:299.
  • Mi H, Muruganujan A, Casagrande JT, Thomas PD. 2013. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–66.
  • Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. 2016. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–42.
  • Nuwaysir EF, Bittner M, Trent J, Barrett JC, Afshari CA. 1999. Microarrays and toxicology: The advent of toxicogenomics. Mol Carcinogen 24:153–9.
  • Ohno Y. 2002. ICH guidelines—implementation of the 3Rs (Refinement, Reduction, and Replacement): incorporating best scientific practices into the regulatory process. ILAR J 43:S95–S8.
  • Pareek CS, Smoczynski R, Tretyn A. 2011. Sequencing technologies and genome sequencing. J Appl Genet 52:413–35.
  • Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, et al. 2016. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44:D746–52.
  • Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stuerzenbaum SR. 2014. Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Compar Biochem Physiol C-Toxicol Pharmacol 160:75–85.
  • Poma A, Di Giorgio ML. 2008. Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: a review. CGGenomics 9:571–85.
  • Poynton HC, Lazorchak JM, Impellitteri CA, Blalock BJ, Rogers K, Allen HJ, et al. 2012. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46:6288–96.
  • Quach TK, Chou HT, Wang K, Milledge GZ, Johnson CM. 2013. Genome-wide microarrray analysis reveals roles for the REF-1 family member HLH-29 in ferritin synthesis and peroxide stress response. PLoS One 8:e59719.
  • Rocheleau S, Arbour M, Elias M, Sunahara GI, Masson L. 2015. Toxicogenomic effects of nano- and bulk-TiO2 particles in the soil nematode Caenorhabditis elegans. Nanotoxicology 9:502–12.
  • Roh J-Y, Eom H-J, Choi J. 2012. Involvement of Caenohabditis elegans MAPK signaling pathways in oxidative stress response induced by silver nanoparticles exposure. Toxicol Res 28:19–24.
  • Roh J-Y, Park Y-K, Park K, Choi J. 2010a. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–72.
  • Roh JY, Park YK, Park K, Choi J. 2010b. Ecotoxicological investigation of CeO(2) and TiO(2) nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–72.
  • Rui Q, Zhao Y, Wu Q, Tang M, Wang D. 2013. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress responset. Chemosphere 93:2289–96.
  • Sawa H, Korswagen HC. 2013. Wnt signaling in C. elegans. In: WormBook, ed. The C. elegans Research Community. WormBook. doi/10.1895/wormbook.1.7.2.
  • Scharf A, Guhrs KH, Von Mikecz A. 2016. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans. Nanotoxicology 10:426–35.
  • Soenen SJ, Parak WJ, Rejman J, Manshian B. 2015. (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–35.
  • Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K. 2011. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–65.
  • Starnes DL, Lichtenberg SS, Unrine JM, Starnes CP, Oostveen EK, Lowry GV, et al. 2016. Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. Environ Pollut (Barking, Essex: 1987) 213:314–21.
  • Sundaram MV. 2006. RTK/Ras/MAPK signaling. In: WormBook, ed. The C. elegans Research Community, ed. WormBook. WormBook. doi/10.1895/wormbook.1.80.1.
  • Swain S, Wren JF, Sturzenbaum SR, Kille P, Morgan AJ, Jager T, et al. 2010. Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. BMC Syst Biol 4:32.
  • Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR. 2004. C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–9.
  • Teeguarden JG, Mikheev VB, Minard KR, Forsythe WC, Wang W, Sharma G, et al. 2014. Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Part Fibre Toxicol 11:46.
  • Tino A, Ambrosone A, Marchesano V, Tortiglione C. 2014. Molecular Bases of Nanotoxicology. Bio- and Bioinspired Nanomaterials. Wiley-VCH Verlag.
  • Truong L, Tilton SC, Zaikova T, Richman E, Waters KM, Hutchison JE, Tanguay RL. 2013. Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology 7:192–201.
  • Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM. 2000. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 20:5818–27.
  • Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, et al. 2012. Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol 46:4115–24.
  • Turkevich J, Stevenson PC, Hillier J. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75.
  • Wu Q, Li Y, Tang M, Wang D. 2012. Evaluation of environmental safety concentrations of DMSA Coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One 7:e43729.
  • Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, et al. 2013. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–31.
  • Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, et al. 2015. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. Nanoscale 7:20460–73.
  • Yu S-M, Gonzalez-Moragas L, Milla M, Kolovou A, Santarella-Mellwig R, Schwab Y, et al. 2016a. Bio-identity and fate of albumin-coated SPIONs evaluated in cells and by the C. elegans model. Acta Biomaterialia 43:348–57.
  • Yu S-M, Laromaine A, Roig A. 2014. Enhanced stability of superparamagnetic iron oxide nanoparticles in biological media using a pH adjusted-BSA adsorption protocol. J Nanopart Res 16:2484.
  • Yu S, Peralvarez-Marin A, Minelli C, Faraudo J, Roig A, Laromaine A. 2016b. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins. Nanoscale 8:14393–405.
  • Zhang X, Zhang H, Liang X, Zhang J, Tao W, Zhu X, et al. 2016. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage, and ER stress. Mol Pharm 13:2578–87.
  • Zhao Y, Wu Q, Li Y, Wang D. 2013. Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. Rsc Adv 3:5741–57.
  • Zhao Y, Wu Q, Tang M, Wang D. 2014. The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomed-Nanotechnol Biol Med 10:89–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.