1,775
Views
227
CrossRef citations to date
0
Altmetric
Review

Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk

, , , , , & show all
Pages 591-612 | Received 23 Dec 2016, Accepted 13 Jun 2017, Published online: 31 Jul 2017

References

  • Alexander M. 2000. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–65.
  • Altenburger R, Walter H, Grote M. 2004. What contributes to the combined effect of a complex mixture? Environ Sci Technol 38:6353–62.
  • Armstrong D, Bharali DJ. 2013. Oxidative Stress and Nanotechnology: methods and Protocols. Totowa, NJ: Humana Press.
  • Bai Y, Park IS, Lee SJ, Wen PS, Bae TS, Lee MH. 2012. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity. Colloids Surf B Biointerfaces 89:101–7.
  • Bai Y, Wang CY, Gao JJ, Su J, Ma W. 2015. A study on dispersion and antibacterial activity of functionalizing multi-walled carbon nanotubes with mixed surfactant. J Surfact Deterg 18:957–64.
  • Balbi T, Smerilli A, Fabbri R, Ciacci C, Montagna M, Grasselli E, et al. 2014. Co-exposure to nTiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci Total Environ 493:355–64.
  • Barbieri E, Campos-Garcia J, Martinez DS, da Silva JRM, Alves OL, Rezende KF. 2016. Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal 22:1162–9.
  • Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB. 2008. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–87.
  • Broderius SJ, Kahl MD, Hoglund MD. 1995. Use of joint toxic response to define the primary-mode of toxic action for diverse industrial organic-chemicals. Environ Toxicol Chem 14:1591–605.
  • Bruton TA, Pycke BFG, Halden RU. 2015. Effect of nanoscale zero-valent iron treatment on biological reductive dechlorination: a review of current understanding and research needs. Crit Rev Environ Sci Technol 45:1148–75.
  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL. 2009. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–95.
  • Campos-Garcia J, Martinez DST, Alves OL, Gervasio Leonardo AF, Barbieri E. 2015. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity. Ecotoxicol Environ Saf 111:131–7.
  • Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Uranga N, Mendoza G. 2016. Colloidal stability and ecotoxicity of multiwalled carbon nanotubes: influence of select organic matters. Environ Toxicol Chem 35:74–83.
  • Chen C, Wang YH, Qian YZ, Zhao XP, Wang Q. 2015. The synergistic toxicity of the multiple chemical mixtures: implications for risk assessment in the terrestrial environment. Environ Int 77:95–105.
  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 1992. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G-T and A-C substitutions. J Biol Chem 267:166–72.
  • Chou TC, Talalay P. 1984. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55.
  • Cohen MD, Kargacin B, Klein CB, Costa M. 1993. Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol 23:255–81.
  • Collin B, Oostveen E, Tsyusko OV, Unrine JM. 2014. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–9.
  • Cui XJ, Wan B, Guo LH, Yang Y, Ren XM. 2016. Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: role of P2X7 receptor. Environ Sci Technol 50:12473–83.
  • Dai ZX, Yin Y, Wang SH. 2013. Effect of nanomaterials on ecotoxicity of phenanthrene in Carassius auratus. Environ Chem 32:1342–7.
  • De La Torre-Roche R, Hawthorne J, Deng YQ, Xing BS, Cai WJ, Newman LA, et al. 2012. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environ Sci Technol 46:9315–23.
  • De La Torre-Roche R, Hawthorne J, Musante C, Xing BS, Newman LA, Ma XM, White JC. 2013. Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47:718–25.
  • Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, Yu HT. 2016. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840–8.
  • Deng YQ, Eitzer B, White JC, Xing BS. 2017. Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environ Sci: Nano 4:149–59.
  • Devi GP, Ahmed KBA, Varsha MKNS, Shrijha BS, Lal KKS, Anbazhagan V, Thiagarajan R. 2015. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–56.
  • Dhasmana A, Jamal QMS, Mir SS, Bhatt MLB, Rahman Q, Gupta R, et al. 2014. Titanium dioxide nanoparticles as guardian against environmental carcinogen Benzo[alpha]Pyrene. PLoS One 9:e1070689.
  • Everett WN, Chern C, Sun D, McMahon RE, Zhang X, Chen WA, et al. 2014. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicol Lett 225:177–84.
  • Fan WH, Liu T, Li XM, Peng RS, Zhang YL. 2016a. Nano-TiO2 affects Cu speciation, extracellular enzyme activity, and bacterial communities in sediments. Environ Pollut 218:77–85.
  • Fan WH, Peng RS, Li XM, Ren JQ, Liu T, Wang XR. 2016b. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: role of organic matter. Water Res 105:129–37.
  • Fang LP, Borggaard OK, Holm PE, Hansen HCB, Cedergreen N. 2011. Toxicity and uptake of TRI- and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal. Environ Toxicol Chem 30:2553–61.
  • Fang Q, Shi QP, Guo YY, Hua JH, Wang XF, Zhou BS. 2016. Enhanced bioconcentration of Bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol 50:1005–13.
  • Fang Q, Shi XJ, Zhang LP, Wang QW, Wang XF, Guo YY, Zhou BS. 2015. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904.
  • Farkas J, Bergum S, Nilsen EW, Olsen AJ, Salaberria I, Ciesielski TM, et al. 2015. The impact of TiO2 nanoparticles on uptake and toxicity of benzo(a)pyrene in the blue mussel (Mytilus edulis). Sci Total Environ 511:469–76.
  • Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, et al. 2001. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56:13–32.
  • Feig DI, Reid TM, Loeb LA. 1994. Reactive oxygen species in tumorigenesis. Cancer Res 54:1890s–4s.
  • Ferguson PL, Chandler GT, Templeton RC, Demarco A, Scrivens WA, Englehart BA. 2008. Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42:3879–85.
  • Gao J, Powers K, Wang Y, Zhou HY, Roberts SM, Moudgil BM, et al. 2012. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 89:96–101.
  • Garcia-Alonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, et al. 2011. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45:4630–6.
  • Glomstad B, Altin D, Sorensen L, Liu JF, Jenssen BM, Booth AM. 2016. Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol 50:2660–8.
  • Guo B, Zebda R, Drake SJ, Sayes CM. 2009. Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Part Fibre Toxicol 6:4.
  • Hartmann NB, Legros S, Von der Kammer F, Hofmann T, Baun A. 2012. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol 118-9:1–8.
  • Horie M, Stowe M, Tabei M, Kato H, Nakamura A, Endoh S, et al. 2013. Dispersant affects the cellular influences of single-wall carbon nanotube: the role of CNT as carrier of dispersants. Toxicol Mech Methods 23:315–22.
  • Huang ZB, Zheng X, Yan DH, Yin GF, Liao XM, Kang YQ, et al. 2008. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4.
  • Hund-Rinke K, Baun A, Cupi D, Fernandes TF, Handy R, Kinross JH, Scott-Fordsmand JJ. 2016. Regulatory ecotoxicity testing of nanomaterials – proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles . Nanotoxicology 10:1442–7.
  • Huynh KA, McCaffery JM, Chen KL. 2014. Heteroaggregation reduces antimicrobial activity of silver nanoparticles: evidence for nanoparticle-cell proximity effects. Environ Sci Technol Lett 1:361–6.
  • Ji Y, Zhou Y, Ma CX, Feng Y, Hao Y, Rui YK, et al. 2017. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem. 110:82–93.
  • Jia JB, Li FF, Zhai SM, Zhou HY, Liu SJ, Jiang GB, Yan B. 2017. Susceptibility of overweight mice to liver injury as a result of the ZnO nanoparticle-enhanced liver deposition of Pb2+. Environ Sci Technol 51:1775–84.
  • Jones CF, Grainger DW. 2009. In vitro assessments of nanomaterial toxicity. Adv Drug Deliver Rev 61:438–56.
  • Josko I, Oleszczuk P, Pranagal J, Lehmann J, Xing BS, Cornelissen G. 2013. Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol Eng 60:50–9.
  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA. 2007. Food web-specific biomagnification of persistent organic pollutants. Science 317:236–9.
  • Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA. 2012. Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46:10772–80.
  • Kim I, Lee B, Kim H, Kim K, Kim SD, Hwang Y. 2016. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105.
  • Kim J, Kim S, Schaumann GE. 2013a. Reliable predictive computational toxicology methods for mixture toxicity: toward the development of innovative integrated models for environmental risk assessment. Rev Environ Sci Biol 12:235–56.
  • Kim JY, Kim K, Lee BG, Lim BJ, Kim SD. 2013b. Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Saf 92:57–63.
  • Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, Xia T, et al. 2009. Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43:6378–84.
  • Kumar R, Khan MA, Haq N. 2014. Application of carbon nanotubes in heavy metals remediation. Crit Rev Environ Sci Technol 44:1000–35.
  • Kunhikrishnan A, Shon HK, Bolan NS, El Saliby I, Vigneswaran S. 2015. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit Rev Environ Sci Technol 45:277–318.
  • Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, et al. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–34.
  • Lee S, Kim K, Shon HK, Kim SD, Cho J. 2011. Biotoxicity of nanoparticles: effect of natural organic matter. J Nanopart Res 13:3051–61.
  • Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Jr., Brown GE. 2013a. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–45.
  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, et al. 2013b. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–8.
  • Levard C, Yang XY, Meyer JN, Lowry GV. 2014. Response to comment on “Sulfidation of silver nanoparticles: natural antidote to their toxicity”. Environ Sci Technol 48:6051–2.
  • Li M, Lin DH, Zhu LZ. 2013. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102.
  • Li LXY, Fernández-Cruz ML, Connolly M, Conde E, Fernández M, Schuster M, Navas JM. 2015a. The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro. Sci Total Environ 505:253–60.
  • Li LXY, Hu LG, Zhou QF, Huang CH, Wang YW, Sun C, Jiang GB. 2015b. Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in medaka (Oryzias latipes) embryos. Environ Sci Technol 49:2486–95.
  • Li XM, Zhou SY, Fan WH. 2016a. Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. Int J Environ Res Pub Health 13:575.
  • Li MT, Luo ZX, Yan YM, Wang ZH, Chi QQ, Yan CZ, Xing BS. 2016b. Arsenate accumulation, distribution, and toxicity associated with titanium dioxide nanoparticles in Daphnia magna. Environ Sci Technol 50:9636–43.
  • Li SB, Ma HB, Wallis LK, Etterson MA, Riley B, Hoff DJ, Diamond SA. 2016c. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci Total Environ 542:324–33.
  • Li ZQ, Greden K, Alvarez PJJ, Gregory KB, Lowry GV. 2010. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462–7.
  • Lin DH, Ji J, Tian XL, Liu N, Yang K, Wu FC, et al. 2009. Environmental behavior and toxicity of engineered nanomaterials. Chinese Sci Bull 54:3590–604.
  • Lin DH, Ji J, Long ZF, Yang K, Wu FC. 2012a. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46:4477–87.
  • Lin DH, Li TT, Yang K, Wu FC. 2012b. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties. J Hazard Mater 241:404–10.
  • Lin DH, Ma S, Zhou KJ, Wu FC, Yang K. 2015. The effect of water chemistry on homoaggregations of various nanoparticles: specific role of Cl- ions. J Colloid Interf Sci 450:272–8.
  • Lin DH, Tian XL, Wu FC, Xing BS. 2010. Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–908.
  • Lin DH, Xing BS. 2008. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ Sci Technol 42:5917–23.
  • Liu J, Wang WX. 2015. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure. Environ Toxicol Chem 34:2824–32.
  • Liu S, Jiang W, Wu B, Yu J, Yu HY, Zhang XX, et al. 2016a. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology 10:597–606.
  • Liu Y, Wang XN, Wang J, Nie YG, Du H, Dai H, et al. 2016b. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ Sci Technol 50:3154–64.
  • Liu Y, Baas J, Peijnenburg WJGM, Vijver MG. 2016c. Evaluating the combined toxicity of Cu and ZnO nanoparticles: utility of the concept of additivity and a nested experimental design. Environ Sci Technol 50:5328–37.
  • Lopez-Luna J, Silva-Silva MJ, Martinez-Vargas S, Mijangos-Ricardez OF, Gonzalez-Chavez MC, Solis-Dominguez FA, Cuevas-Diaz MC. 2016. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ 565:941–50.
  • Ma HB, Wallis LK, Diamond S, Li SB, Canas-Carrell J, Parra A. 2014. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut 193:165–72.
  • Ma S, Lin DH. 2013. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Process Impact 15:145–60.
  • Ma TW, Wang M, Gong SJ, Tian B. 2017. Impacts of sediment organic matter content and pH on ecotoxicity of coexposure of TiO2 nanoparticles and cadmium to freshwater snails Bellamya aeruginosa. Arch Environ Contam Toxicol 72:153–65.
  • Martinez DST, Alves OL, Barbieri E. 2013. Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser 429:012043.
  • Moussa H, Merlin C, Dezanet C, Balan L, Medjahdi G, Ben-Attia M, Schneider R. 2016. Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J Hazard Mater 304:532–42.
  • Naddafi K, Zare MR, Nazmara S. 2011. Investigating potential toxicity of phenanthrene adsorbed to nano-ZnO using Daphnia magna. Toxicol Environ Chem 93:729–37.
  • Nunes SM, Josende ME, Ruas CP, Gelesky MA, d, Silva Júnior FMR, Fattorini D, Ventura-Lima J. 2017. Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology 376:51–8.
  • Oehme FW. 1972. Mechanisms of heavy metal toxicities. Clin Toxicol 5:151–67.
  • Oleszczuk P, Jośko I, Skwarek E. 2015. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology 24:1923–32.
  • Pádrová K, Maťátková O, Šiková M, Füzik T, Masák J, Čejková A, Jirků V. 2016. Mitigation of Fe0 nanoparticles toxicity to Trichosporon cutaneum by humic substances. New Biotechnol 33:144–52.
  • Patricks VO, Wepener V, Maboeta MS. 2014. Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta). Appl Soil Ecol 84:231–4.
  • Petersen EJ, Pinto RA, Landrum PF, Weber JWJ. 2009. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43:4181–7.
  • Qiang LW, Shi XM, Pan XY, Zhu LY, Chen M, Han YW. 2015. Facilitated bioaccumulation of perfluorooctanesulfonate in zebrafish by nano-TiO2 in two crystalline phases. Environ Pollut 206:644–51.
  • Qiang LW, Pan XY, Zhu LY, Fang SH, Tian SY. 2016a. Effects of nano-TiO2 on perfluorooctanesulfonate bioaccumulation in fishes living in different water layers: implications for enhanced risk of perfluorooctanesulfonate. Nanotoxicology 10:471–9.
  • Qiang LW, Chen M, Zhu LY, Wu W, Wang Q. 2016b. Facilitated bioaccumulation of perfluorooctane sulfonate in common carp (Cyprinus carpio) by graphene oxide and remission mechanism of fulvic acid. Environ Sci Technol 50:11627–36.
  • Qu XL, Alvarez PJJ, Li QL. 2013. Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–46.
  • Rodriguez-Yanez Y, Munoz B, Albores A. 2013. Mechanisms of toxicity by carbon nanotubes. Toxicol Mech Methods 23:178–95.
  • Rosenfeldt RR, Seitz F, Haigis A, Hoeger J, Zubrod JP, Schulz R, Bundschuh M. 2016. Nanosized titanium dioxide influences copper-induced toxicity during aging as a function of environmental conditions. Environ Toxicol Chem 35:1766–74.
  • Rosenfeldt RR, Seitz F, Schulz R, Bundschuh M. 2014. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna. Environ Sci Technol 48:6965–72.
  • Rosenfeldt RR, Seitz F, Senn L, Schilde C, Schulz R, Bundschuh M. 2015. Nanosized titanium dioxide reduces copper toxicity-the role of organic material and the crystalline phase. Environ Sci Technol 49:1815–22.
  • Rotoli BM, Bussolati O, Bianchi MG, Barilli A, Balasubramanian C, Bellucci S, Bergamaschi E. 2008. Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178:95–102.
  • Sahle-Demessie E, Han C, Zhao A, Hahn B, Grecsek H. 2016. Interaction of engineered nanomaterials with hydrophobic organic pollutants. Nanotechnology 27:284003.
  • Saleh NB, Afrooz ARMN, Jr Bisesi JH, Aich N, Plazas-Tuttle J, Sabo-Attwood T. 2014. Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems. Nanomaterials 4:372–407.
  • Sanchis J, Olmos M, Vincent P, Farre M, Barcelo D. 2016. New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol 50:961–9.
  • Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B. 2013. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47:7012–19.
  • Shen MH, Xia XH, Wang F, Zhang P, Zhao XL. 2012. Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment. Environ Toxicol Chem 31:202–9.
  • Shrestha B, Anderson TA, Acosta-Martinez V, Payton P, Cañas-Carrell JE. 2015. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotoxicol Environ Saf 116:143–9.
  • Simon A, Maletz SX, Hollert H, Schaeffer A, Maes HM. 2014. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. Nanoscale Res Lett 9:396.
  • Simon A, Preuss TG, Schäffer A, Hollert H, Maes HM. 2015. Population level effects of multiwalled carbon nanotubes in Daphnia magna exposed to pulses of triclocarban. Ecotoxicology 24:1199–212.
  • Song MY, Wang FB, Zeng LZ, Yin JF, Wang HL, Jiang GB. 2014. Co-exposure of carboxyl-functionalized single-walled carbon nanotubes and 17 alpha-ethinylestradiol in cultured cells: effects on bioactivity and cytotoxicity. Environ Sci Technol 48:13978–84.
  • Spohn P, Hirsch C, Hasler F, Bruinink A, Krug HF, Wick P. 2009. C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–9.
  • Starnes DL, Unrine JM, Starnes CP, Collin BE, Oostveen EK, Ma R, et al. 2015. Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ Pollut 196:239–46.
  • Su Y, Yan XM, Pu YB, Xiao F, Wang DS, Yang M. 2013. Risks of single-walled carbon nanotubes acting as contaminants-carriers: potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environ Sci Technol 47:4704–10.
  • Tallarida RJ. 2006. An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319:1–7.
  • Tan LY, Huang B, Xu S, Wei ZB, Yang LY, Miao AJ. 2017. Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna. Environ Sci Technol 51:932–9.
  • Tao XJ, He YL, Fortner JD, Chen YS, Hughes JB. 2013. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): enhanced toxicity and accumulation of copper in Daphnia magna. Chemosphere 92:1245–52.
  • Tian BX, Wu LS, Wang GZ. 2013. The joint toxicity of TiO2 nanoparticles with phenanthrene and pyrene to Tigriopus japonicus. J Jimei Univ (Nat Sci) 18:241–5.
  • Tian SY, Zhang YD, Song CZ, Zhu XS, Xing BS. 2014. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environ Pollut 192:59–64.
  • Tian SY, Zhang YD, Song CZ, Zhu XS, Xing BS. 2015. Bioaccumulation and biotransformation of polybrominated diphenyl ethers in the marine bivalve (Scapharca subcrenata): influence of titanium dioxide nanoparticles. Mar Pollut Bull 90:48–53.
  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25:795–821.
  • Tong TZ, Wilke CM, Wu JS, Binh CTT, Kelly JJ, Gaillard J, Gray KA. 2015. Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ Sci Technol 49:8113–23.
  • U.S. EPA. Nanotechnology White Paper. 2007. Science Policy Council, U.S. Environmental Protection Agency: Washington (DC).
  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV. 2017. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69.
  • Völker C, Gräf T, Schneider I, Oetken M, Oehlmann J. 2014. Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum. Environ Sci Pollut Res Int 21:10661–70.
  • Wang DH, Hu J, Forthaus BE, Wang JM. 2011a. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia. Environ Pollut 159:3003–8.
  • Wang DM, Hu J, Irons DR, Wang JM. 2011b. Synergistic toxic effect of nano-TiO2 and As(V) on Ceriodaphnia dubia. Sci Total Environ 409:1351–6.
  • Wang ZY, Li J, Zhao J, Xing BS. 2011c. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–40.
  • Wang M, Chen L, Chen SB, Ma YB. 2012. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotox Environ Safe 79:48–54.
  • Wang QW, Chen Q, Zhou P, Li WW, Wang JX, Huang CJ, et al. 2014a. Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology 8:196–207.
  • Wang DL, Lin ZF, Yao ZF, Yu HX. 2014b. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere 108:70–5.
  • Wang J, Wang WX. 2014. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33:632–40.
  • Wang M, Liu SS, Long Y, Gong SJ, Tian B, Ma TW. 2015a. Impacts of multi-walled carbon nanotubes on ecotoxicity of Cd and BDE-47 in sediments. Acta Scientiae Circumstantiae 35:4150–8.
  • Wang Y, Peng C, Fang HX, Sun LJ, Zhang H, Feng JB, et al. 2015b. Mitigation of Cu(II) phytotoxicity to rice (Oryza sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environ Toxicol Chem 34:1588–96.
  • Wang F, Yao J, Liu HJ, Liu RP, Chen HL, Yi ZJ, et al. 2015c. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. J Hazard Mater 292:137–45.
  • Wang XH, Qu RJ, Liu JQ, Wei ZB, Wang LS, Yang SG, et al. 2016a. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: the role of catalyst impurities and adsorption capacity. Environ Pollut 208:732–8.
  • Wang XH, Qu RJ, Allam AA, Ajarem J, Wei ZB, Wang ZY. 2016b. Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to Daphnia magna: the role of certain arsenic species. Environ Toxicol Chem 35:1852–9.
  • Wang L, Liu JH, Song ZM, Yang YX, Cao A, Liu YF, Wang HF. 2016c. Interaction of multi-walled carbon nanotubes and zinc ions enhances cytotoxicity of zinc ions. Sci China Chem 59:910–17.
  • Wang ZY, Zhang L, Zhao J, Xing BS. 2016d. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ Sci: Nano 3:240–55.
  • Wirth SM, Lowry GV, Tilton RD. 2012. Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687–96.
  • Wu J, Xie YY, Fang ZQ, Cheng W, Tsang PE. 2016. Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere 162:235–42.
  • Xia XH, Chen X, Zhao XL, Chen HT, Shen MH. 2012. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment. Environ Sci Technol 46:12467–75.
  • Xie Y, Wang BB, Li FC, Ma L, Ni M, Shen WD, et al. 2014. Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 9:e101062.
  • Yang K, Xing BS. 2007. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–37.
  • Yang K, Xing BS. 2010. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008.
  • Yang L, Watts DJ. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–32.
  • Yang SP, Bar-Ilan O, Peterson RE, Heideman W, Hamers RJ, Pedersen JA. 2013. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ Sci Technol 47:4718–25.
  • Yang WW, Li Y, Miao AJ, Yang LY. 2012a. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51.
  • Yang WW, Miao AJ, Yang LY. 2012b. Cd2+ Toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7:e323003.
  • Yang WW, Wang Y, Huang B, Wang NX, Wei ZB, Luo J, et al. 2014. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila. Environ Sci Technol 48:7568–75.
  • Yang XY, Edelmann RE, Oris JT. 2010. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aquat Toxicol 100:202–10.
  • Yu J, Liu S, Wu B, Shen ZY, Cherr GN, Zhang XX, Li M. 2016a. Comparison of cytotoxicity and inhibition of membrane ABC transporters induced by MWCNTs with different length and functional groups. Environ Sci Technol 50:3985–94.
  • Yu R, Wu JK, Liu MT, Chen LH, Zhu GC, Lu HJ. 2016b. Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures. Environ Sci Pollut Res 23:13023–34.
  • Yu R, Wu JK, Liu MT, Zhu GC, Chen LH, Chang Y, Lu HJ. 2016c. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere 153:187–97.
  • Yu YB, Duan JC, Li Y, Yu Y, Jin MH, Li CX, et al. 2015. Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells. Ecotoxicol Environ Saf 112:144–52.
  • Zhang HY, Liu Y, Shen XF, Zhang M, Yang Y, Tao S, Wang XL. 2017. Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings. Environ Pollut 220:1409–17.
  • Zhang JH. 2008. Study on Synergistic Oxidative Stress and Genotoxicity Caused by Trace DDT and Nanoparticle Titanium Dioxide in Human Derived Fetal Hepatocytes. Wuhan, China: Huazhong University of Science and Technology (Chin Ver).
  • Zhang LQ, Lei C, Chen JJ, Yang K, Zhu LZ, Lin DH. 2015. Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon 83:198–207.
  • Zhang LQ, Li JY, Yang K, Liu J, Lin DH. 2016. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut 211:132–40.
  • Zhang SJ, Shao T, Kose HS, Karanfil T. 2010. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ Sci Technol 44:6377–83.
  • Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC. 2007. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–6.
  • Zhu XD, Wang YJ, Sun RJ, Zhou DM. 2013. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92:925–32.
  • Zhu XS, Zhou J, Cai ZH. 2011. TiO2 nanoparticles in the marine environment: impact on the toxicity of tributyltin to abalone (Haliotis diversicolor supertexta) embryos. Environ Sci Technol 45:3753–8.
  • Zindler F, Glomstad B, Altin D, Liu JF, Jenssen BM, Booth AM. 2016. Phenanthrene bioavailability and toxicity to Daphnia magna in the presence of carbon nanotubes with different physicochemical properties. Environ Sci Technol 50:12446–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.