944
Views
49
CrossRef citations to date
0
Altmetric
Original Article

Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress

, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 751-761 | Received 25 Nov 2016, Accepted 24 Jun 2017, Published online: 19 Jul 2017

References

  • Al-Rasheed NM, Faddah LM, Mohamed AM, Abdel Baky NA, Al-Rasheed NM, Mohammad RA. 2013. Potential impact of quercetin and idebenone against immuno-inflammatory and oxidative renal damage induced in rats by titanium dioxide nanoparticles toxicity. J Oleo Sci 62:961–71.
  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho Moniz F, Brandhoff P, et al. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–76.
  • Annangi B, Bach J, Vales G, Rubio L, Marcos R, Hernandez A. 2015. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 9:138–47.
  • Annangi B, Rubio L, Alaraby M, Bach J, Marcos R, Hernandez A. 2016. Acute and long-term in vitro effects of zinc oxide nanoparticles. Arch Toxicol 90:2201–13.
  • Armand L, Biola-Clier M, Bobyk L, Collin-Faure V, Diemer H, Strub JM, et al. 2016a. Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: a proteomic view. J Proteomics 134:163–73.
  • Armand L, Tarantini A, Beal D, Biola-Clier M, Bobyk L, Sorieul S, et al. 2016b. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 10:913–23.
  • Aude-Garcia C, Villiers F, Collin-Faure V, Pernet-Gallay K, Jouneau PH, Sorieul S, et al. 2016. Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Nanotoxicology 10:586–96.
  • Bettini S, Boutet-Robinet E, Cartier C, Comera C, Gaultier E, Dupuy J, et al. 2017. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci Rep 7:40373.
  • Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chaneac C, et al. 2014. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol 11:13.
  • Carriere M, Sauvaigo S, Douki T, Ravanat JL. 2017. Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses. Mutagenesis 32:203–13.
  • Chaudhari N, Talwar P, Parimisetty A, Lefebvre d'Hellencourt C, Ravanan P. 2014. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213.
  • Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ, et al. 2013. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 9:1765–74.
  • Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Luan X, et al. 2015. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol Lett 239:123–30.
  • Comfort KK, Braydich-Stolle LK, Maurer EI, Hussain SM. 2014. Less is more: long-term in vitro exposure to low levels of silver nanoparticles provides new insights for nanomaterial evaluation. ACS Nano 8:3260–71.
  • Deuring JJ, Peppelenbosch MP, Kuipers EJ, van der Woude CJ, de Haar C. 2011. Impeded protein folding and function in active inflammatory bowel disease. Biochem Soc Trans 39:1107–11.
  • Dorier M, Brun E, Veronesi G, Barreau F, Pernet-Gallay K, Desvergne C, et al. 2015. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale 7:7352–60.
  • EFSA AP. 2016. Scientific opinion on the re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J 14:4545–628.
  • Frohlich E, Roblegg E. 2012. Models for oral uptake of nanoparticles in consumer products. Toxicology 291:10–17.
  • Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, et al. 2012. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 25:646–55.
  • Gerloff K, Pereira DI, Faria N, Boots AW, Kolling J, Forster I, et al. 2013. Influence of simulated gastrointestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells. Nanotoxicology 7:353–66.
  • Grande F, Tucci P. 2016. Titanium dioxide nanoparticles: a risk for human health? Mini Rev Med Chem 16:762–9.
  • Heringa MB, Geraets L, van Eijkeren JC, Vandebriel RJ, de Jong WH, Oomen AG. 2016. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology 10:1515–15.
  • Jia F, Sun Z, Yan X, Zhou B, Wang J. 2014. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch Toxicol 88:781–8.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V. 2009. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33.
  • Jovanovic B. 2015. Critical review of public health regulations of titanium dioxide, a human food additive. Integr Environ Assess Manag 11:10–20.
  • Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. 2012. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 6:501–13.
  • Kocbek P, Teskac K, Kreft ME, Kristl J. 2010. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6:1908–17.
  • Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A. 1990. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50:6334–43.
  • Lesuffleur T, Porchet N, Aubert JP, Swallow D, Gum JR, Kim YS, et al. 1993. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci 106:771–83.
  • Malhotra JD, Kaufman RJ. 2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–93.
  • McCracken C, Dutta PK, Waldman WJ. 2016. Critical assessment of toxicological effects of ingested nanoparticles. Environ Sci-Nano 3:256–82.
  • McGuckin MA, Linden SK, Sutton P, Florin TH. 2011. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–78.
  • Pele LC, Thoree V, Bruggraber SF, Koller D, Thompson RP, Lomer MC, Powell JJ. 2015. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers. Part Fibre Toxicol 12:26.
  • Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S, et al. 2014. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62:6285–93.
  • Pfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36.
  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–15.
  • Pignon B, Maskrot H, Ferreol VG, Leconte Y, Coste S, Gervais M, et al. 2008. Versatility of laser pyrolysis applied to the synthesis of TiO2 nanoparticles – application to UV attenuation. Eur J Inorg Chem 2008:883–9.
  • Powell JJ, Faria N, Thomas-McKay E, Pele LC. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–33.
  • Rompelberg C, Heringa MB, van Donkersgoed G, Drijvers J, Roos A, Westenbrink S, et al. 2016. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10:1404–14.
  • Sayes CM, Reed KL, Warheit DB. 2007. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–80.
  • Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15.
  • Simon-Deckers A, Gouget B, Mayne-L'hermite M, Herlin-Boime N, Reynaud C, Carriere M. 2008. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253:137–46.
  • Skocaj M, Filipic M, Petkovic J, Novak S. 2011. Titanium dioxide in our everyday life; is it safe? Radiol Oncol 45:227–47.
  • Song ZM, Chen N, Liu JH, Tang H, Deng X, Xi WS, et al. 2015. Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study. J Appl Toxicol 35:1169–78.
  • Taurozzi JS, Hackley VA, Wiesner MR. 2011. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment-issues and recommendations. Nanotoxicology 5:711–29.
  • Tay CY, Fang W, Setyawati MI, Chia SL, Tan KS, Hong CH, Leong DT. 2014. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces 6:6248–56.
  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–21.
  • Urrutia-Ortega IM, Garduno-Balderas LG, Delgado-Buenrostro NL, Freyre-Fonseca V, Flores-Flores JO, Gonzalez-Robles A, et al. 2016. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food Chem Toxicol 93:20–31.
  • Vales G, Rubio L, Marcos R. 2015. Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells. Nanotoxicology 9:568–78.
  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–85.
  • Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y, et al. 2013. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 9:1742–52.
  • Warheit DB, Brown SC, Donner EM. 2015. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem Toxicol 84:208–24.
  • Warheit DB, Sayes CM, Reed KL. 2009. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43:7939–45.
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–50.
  • Yang Y, Doudrick K, Bi X, Hristovski K, Herckes P, Westerhoff P, Kaegi R. 2014. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol 48:6391–400.
  • Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ, et al. 2015a. Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic cell death via mitochondria-associated endoplasmic reticulum membrane disruption in normal lung cells. PLoS One 10:e0131208.
  • Yu KN, Sung JH, Lee S, Kim JE, Kim S, Cho WY, et al. 2015b. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol 85:106–13.
  • Zhang K, Kaufman RJ. 2008. From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.