160
Views
7
CrossRef citations to date
0
Altmetric
Articles

Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment

ORCID Icon &
Pages 339-353 | Received 30 Apr 2018, Accepted 08 Nov 2018, Published online: 07 Feb 2019

References

  • Andrews, J. M. 2001. “Determination of Minimum Inhibitory Concentrations.” Journal of Antimicrobial Chemotherapy 48 (suppl_1):5–16. doi:10.1093/jac/48.suppl_1.5
  • Bondarenko, O.,. A. Ivask, A. Käkinen, I. Kurvet, and A. Kahru. 2013. “Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles.” Plos ONE 8 (5):e64060. doi:10.1371/journal.pone.0064060
  • Bovenkamp, G. L., U. Zanzen, K. S. Krishna, J. Hormes, and A. Prange. 2013. “X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli.” Applied and Environmental Microbiology 79 (20):6385–6390. doi:10.1128/AEM.01688-13
  • Brauner, A.,. O. Fridman, O. Gefen, and N. Q. Balaban. 2016. “Distinguishing between Resistance, Tolerance and Persistence to Antibiotic Treatment.” Nature Reviews Microbiology 14 (5):320–330. doi:10.1038/nrmicro.2016.34
  • Butler, I. B., M. A. A. Schoonen, and D. T. Rickard. 1994. “Removal of Dissolved Oxygen from Water: A Comparison of Four Common Techniques.” Talanta 41 (2):211–215. doi:10.1016/0039-9140(94)80110-X
  • Chaloupka, K.,. Y. Malam, and A. M. Seifalian. 2010. “Nanosilver as a New Generation of Nanoproduct in Biomedical Applications.” Trends in Biotechnology 28 (11):580–588. doi:10.1016/j.tibtech.2010.07.006
  • Chambers, B. A., A. R. M. N. Afrooz, S. Bae, N. Aich, L. Katz, N. B. Saleh, and M. J. Kirisits. 2013. “Effects of Chloride and Ionic Strength on Physical Morphology, Dissolution, and Bacterial Toxicity of Silver Nanoparticles.” Environmental Science & Technology 48:761–769.
  • Chernousova, S., and M. Epple. 2013. “Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal.” Angewandte Chemie International Edition 52 (6):1636–1653. doi:10.1002/anie.201205923
  • Cheviron, P., F. Gouanvé, and E. Espuche. 2014. “Green Synthesis of Colloid Silver Nanoparticles and Resulting Biodegradable Starch/Silver Nanocomposites.” Carbohydrate Polymers 108:291–298. doi:10.1016/j.carbpol.2014.02.059
  • Cho, E. C., Q. Zhang, and Y. Xia. 2011. “The Effect of Sedimentation and Diffusion on Cellular Uptake of Gold Nanoparticles.” Nature Nanotechnology 6 (6):385 doi:10.1038/nnano.2011.58
  • Choi, O., and Z. Hu. 2008. “Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria.” Environmental Science & Technology 42:4583–4588. doi:10.1021/es703238h
  • Dibrov, P., J. Dzioba, K. K. Gosink, and C. C. Hase. 2002. “Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae.” Antimicrobial Agents and Chemotherapy 46 (8):2668–2670. doi:10.1128/AAC.46.8.2668-2670.2002
  • Dong, F., N. F. Mohd Zaidi, E. Valsami-Jones, and J.-U. Kreft. 2017. “Time-Resolved Toxicity Study Reveals the Dynamic Interactions between Uncoated Silver Nanoparticles and Bacteria.” Nanotoxicology 11 (5):637–646. doi:10.1080/17435390.2017.1342010
  • Dong, F., E. Valsami-Jones, and J.-U. Kreft. 2016. “New, Rapid Method to Measure Dissolved Silver Concentration in Silver Nanoparticle Suspensions by Aggregation Combined with Centrifugation.” Journal of Nanoparticle Research 18:1–12.
  • Eckhardt, S., P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, and K. M. Fromm. 2013. “Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine.” Chemical Reviews 113:4708–4754
  • Faiz, M. B., R. Amal, C. P. Marquis, E. J. Harry, G. A. Sotiriou, S. A. Rice, and C. Gunawan. 2018. “Nanosilver and the Microbiological Activity of the Particulate Solids Versus the Leached Soluble Silver.” Nanotoxicology 12 (3):263–273. doi:10.1080/17435390.2018.1434910
  • Hall Sedlak, R., M. Hnilova, C. Grosh, H. Fong, F. Baneyx, D. Schwartz, M. Sarikaya, C. Tamerler, and B. Traxler. 2012. “Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance.” Applied and Environmental Microbiology 78 (7):2289–2296. doi:10.1128/AEM.06823-11
  • Hashimoto, Y., S. Takeuchi, S. Mitsunobu, and Y.-S. Ok. 2017. “Chemical Speciation of Silver (Ag) in Soils under Aerobic and Anaerobic Conditions: Ag Nanoparticles vs. ionic Ag.” Journal of Hazardous Materials 322 (Part A):318–324. doi:10.1016/j.jhazmat.2015.09.001
  • Heukeshoven, J., and R. Dernick. 1985. “Simplified Method for Silver Staining of Proteins in Polyacrylamide Gels and the Mechanism of Silver Staining.” Electrophoresis 6 (3):103–112. doi:10.1002/elps.1150060302
  • Hsueh, Y.-H., K.-S. Lin, W.-J. Ke, C.-T. Hsieh, C.-L. Chiang, D.-Y. Tzou, and S.-T. Liu. 2015. “The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.” PLoS ONE 10 (12):e0144306 doi:10.1371/journal.pone.0144306
  • Hunt, J. C., and P. V. Phibbs. 1983. “Regulation of Alternate Peripheral Pathways of Glucose Catabolism during Aerobic and Anaerobic Growth of Pseudomonas aeruginosa.” Journal of Bacteriology 154:793–802.
  • Huynh, K. A., and K. L. Chen. 2011. “Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions.” Environmental Science & Technology 45:5564–5571. doi:10.1021/es200157h
  • Ivask, A., A. Elbadawy, C. Kaweeteerawat, D. Boren, H. Fischer, Z. Ji, C. H. Chang., et al. 2014. “Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver.” Acs Nano 8 (1):374–386. doi:10.1021/nn4044047
  • Jung, Y., G. Metreveli, C.-B. Park, S. Baik, and G. E. Schaumann. 2018. “Implications of Pony Lake Fulvic Acid for the Aggregation and Dissolution of Oppositely Charged Surface-Coated Silver Nanoparticles and Their Ecotoxicological Effects on Daphnia Magna.” Environmental Science & Technology 52: 436–445
  • Kang, F., P. J. Alvarez, and D. Zhu. 2014. “Microbial Extracellular Polymeric Substances Reduce Ag+ to Silver Nanoparticles and Antagonize Bactericidal Activity.” Environmental Science & Technology 48:316–322. doi:10.1021/es403796x
  • Kang, F., X. Qu, P. J. J. Alvarez, and D. Zhu. 2017. “Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.” Environmental Science & Technology 51:2776–2785. doi:10.1021/acs.est.6b05930
  • Kent, R. D., J. G. Oser, and P. J. Vikesland. 2014. “Controlled Evaluation of Silver Nanoparticle Sulfidation in a Full-Scale Wastewater Treatment Plant.” Environmental Science & Technology 48:8564–8572. doi:10.1021/es404989t
  • Kohanski, M. A., D. J. Dwyer, B. Hayete, C. A. Lawrence, and J. J. Collins. 2007. “A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics.” Cell 130 (5):797–810. doi:10.1016/j.cell.2007.06.049
  • Königs, A. M., H.-C. Flemming, and J. Wingender. 2015. “Nanosilver Induces a Nonculturable but Metabolically Active State in Pseudomonas aeruginosa.” Frontiers in Microbiology 6
  • Labauve, A. E., and M. J. Wargo. 2012. “Growth and Laboratory Maintenance of Pseudomonas aeruginosa.” Current Protocols in Microbiology 25:6E.1.1–6E.1.8.
  • Le Ouay, B., and F. Stellacci. 2015. “Antibacterial Activity of Silver Nanoparticles: A Surface Science Insight.” Nano Today 10 (3):339–354. doi:10.1016/j.nantod.2015.04.002
  • Lemire, J. A., J. J. Harrison, and R. J. Turner. 2013. “Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications.” Nature Reviews Microbiology 11 (6):371–384. doi:10.1038/nrmicro3028
  • Levak, M., P. Burić, M. Dutour Sikirić, D. Domazet Jurašin, N. Mikac, N. Bačić, et al. 2017. “Effect of Protein Corona on Silver Nanoparticle Stabilization and Ion Release Kinetics in Artificial Seawater.” Environmental Science & Technology 51:1259–1266. doi:10.1021/acs.est.6b03161
  • Levard, C., S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, and G. E. Brown. 2013. “Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. coli.” Environmental Science & Technology 47:5738–5745. doi:10.1021/es400396f
  • Levard, C., B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, and G. E. Brown. 2011. “Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate.” Environmental Science & Technology 45:5260–5266. doi:10.1021/es2007758
  • Li, R., J. Chen, T. C. Cesario, X. Wang, J. S. Yuan, and P. M. Rentzepis. 2016. “Synergistic Reaction of Silver Nitrate, Silver Nanoparticles, and Methylene Blue against Bacteria.” Proceedings of the National Academy of Sciences 113 (48):13612–13617. doi:10.1073/pnas.1611193113
  • Liu, Y. Y., and J. A. Imlay. 2013. “Cell Death from Antibiotics Without the Involvement of Reactive Oxygen Species.” Science (New York, N.Y.) 339 (6124):1210–1213. doi:10.1126/science.1232751
  • Liu, J., D. A. Sonshine, S. Shervani, and R. H. Hurt. 2010. “Controlled Release of Biologically Active Silver from Nanosilver Surfaces.” Acs Nano 4 (11):6903–6913. doi:10.1021/nn102272n
  • Li, Y., W. Zhang, J. Niu, and Y. Chen. 2012. “Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles.” ACS Nano 6 (6):5164–5173. doi:10.1021/nn300934k
  • Lloyd, J. R. 2003. “Microbial Reduction of Metals and radionuclides.” FEMS Microbiology Reviews 27 (2–3):411–425. doi:10.1016/S0168-6445(03)00044-5
  • Lu, D., Q. Liu, T. Zhang, Y. Cai, Y. Yin, and G. Jiang. 2016. “Stable Silver Isotope Fractionation in the Natural Transformation Process of Silver Nanoparticles.” Nature Nanotechnology 11 (8):682–686. doi:10.1038/nnano.2016.93
  • Ma, L., M. Conover, H. Lu, M. R. Parsek, K. Bayles, and D. J. Wozniak. 2009. “Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix.” PLOS Pathogens 5 (3):e1000354 doi:10.1371/journal.ppat.1000354
  • Mann, E. E., and D. J. Wozniak. 2012. “Pseudomonas Biofilm Matrix Composition and Niche Biology.” FEMS Microbiology Reviews 36 (4):893–916. doi:10.1111/j.1574-6976.2011.00322.x
  • Michen, B., C. Geers, D. Vanhecke, C. Endes, B. Rothen-Rutishauser, S. Balog, and A. Petri-Fink. 2015. “Avoiding Drying-Artifacts in Transmission Electron Microscopy: Characterizing the Size and Colloidal State of Nanoparticles.” Scientific Reports 5:9793. doi:10.1038/srep09793
  • Milne, C. J., D. J. Lapworth, D. C. Gooddy, C. N. Elgy, and É. Valsami-Jones. 2017. “Role of Humic Acid in the Stability of Ag Nanoparticles in Suboxic Conditions.” Environmental Science & Technology 51:6063–6070.
  • Misra, S. K., A. Dybowska, D. Berhanu, S. N. Luoma, and E. Valsami-Jones. 2012. “The Complexity of Nanoparticle Dissolution and Its Importance in Nanotoxicological Studies.” Science of the Total Environment 438:225–232. doi:10.1016/j.scitotenv.2012.08.066
  • Morones-Ramirez, J. R., J. A. Winkler, C. S. Spina, and J. J. Collins. 2013. “Silver Enhances Antibiotic Activity against Gram-Negative Bacteria.” Science Translational Medicine 5 (190):190ra81.
  • Navarro, E., B. Wagner, N. Odzak, L. Sigg, and R. Behra. 2015. “Effects of Differently Coated Silver Nanoparticles on the Photosynthesis of Chlamydomonas reinhardtii.” Environmental Science & Technology 49:8041–8047. doi:10.1021/acs.est.5b01089
  • Ogar, A.,. G. Tylko, and K. Turnau. 2015. “Antifungal Properties of Silver Nanoparticles Against Indoor Mould Growth.” Science of the Total Environment 521–522:305–314. doi:10.1016/j.scitotenv.2015.03.101
  • Panáček, A.,. L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka., et al. 2018. “Bacterial Resistance to Silver Nanoparticles and How to Overcome It.” Nature Nanotechnology 13:65–71.
  • Panáček, A.,. L. Kvítek, R. Prucek, M. Kolář, R. VečEřová, N. Pizúrová, V. K. Sharma, T‘J NevěčNá, and R. Zbořil, 2006. “Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity.” The Journal of Physical Chemistry B 110 (33):16248–16253. doi:10.1021/jp063826h
  • Park, H.-J., J. Y. Kim, J. Kim, J.-H. Lee, J.-S. Hahn, M. B. Gu, and J. Yoon. 2009. “Silver-Ion-Mediated Reactive Oxygen Species Generation Affecting Bactericidal Activity.” Water Research 43 (4):1027–1032. doi:10.1016/j.watres.2008.12.002
  • Pourzahedi, L., and M. J. Eckelman. 2015. “Environmental Life Cycle Assessment of Nanosilver-Enabled Bandages.” Environmental Science & Technology 49:361–368. doi:10.1021/es504655y
  • Pourzahedi, L., M. Vance, and M. J. Eckelman. 2017. “Life Cycle Assessment and Release Studies for 15 Nanosilver-Enabled Consumer Products: Investigating Hotspots and Patterns of Contribution.” Environmental Science & Technology 51:7148–7158. doi:10.1021/acs.est.6b05923
  • Reinsch, B. C., C. Levard, Z. LI, R. Ma, A. Wise, K. B. Gregory, G. E. Brown, G. V. Lowry. 2012. “Sulfidation of Silver Nanoparticles Decreases Escherichia coli Growth Inhibition.” Environmental Science & Technology 46:6992–7000. doi:10.1021/es203732x
  • Reith, F., S. L. Rogers, D. C. Mcphail, and D. Webb. 2006. “Biomineralization of Gold: Biofilms on Bacterioform Gold.” Science (New York, N.Y.) 313 (5784):233–236. doi:10.1126/science.1125878
  • Rizzello, L.,. R. Cingolani, and P. P. Pompa. 2013. “Nanotechnology Tools for Antibacterial Materials.” Nanomedicine 8 (5):807–821. doi:10.2217/nnm.13.63
  • Russell, A. D., and W. B. Hugo. 1994. “Antimicrobial Activity and Action of Silver.” Progress in Medicinal Chemistry 31:351–370. doi:10.1016/S0079-6468(08)70024-9
  • Schwab, F., G. Zhai, M. Kern, A. Turner, J. L. Schnoor, and M. R. Wiesner. 2016. “Barriers, Pathways and Processes for Uptake, Translocation and Accumulation of Nanomaterials in Plants – Critical Review.” Nanotoxicology 10: 257–278.
  • Shen, M.-H., X.-X. Zhou, X.-Y. Yang, J.-B. Chao, R. Liu, and J.-F. Liu. 2015. “Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia Magna.” Scientific Reports 5:9674.
  • Sotiriou, G. A., A. Meyer, J. T. N. Knijnenburg, S. Panke, and S. E. Pratsinis. 2012. “Quantifying the Origin of Released Ag+ Ions from Nanosilver.” Langmuir. 28 (45):15929–15936. doi:10.1021/la303370d
  • Stiefel, P., S. Schmidt-Emrich, K. Maniura-Weber, and Q. Ren. 2015. “Critical Aspects of Using Bacterial Cell Viability Assays with the Fluorophores SYTO9 and Propidium Iodide.” BMC Microbiology 15 (1):36. doi:10.1186/s12866-015-0376-x
  • Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. L. Brinkman., et al. 2000. “Complete Genome Sequence of Pseudomonas aeruginosa PAO1, an Opportunistic Pathogen.” Nature 406 (6799):959–964. doi:10.1038/35023079
  • Vijayaraghavan, K., and Y.-S. Yun. 2008. “Bacterial Biosorbents and Biosorption.” Biotechnology Advances 26 (3):266–291. doi:10.1016/j.biotechadv.2008.02.002
  • Wakshlak, R. B.-K., R. Pedahzur, and D. Avnir. 2015. “Antibacterial Activity of Silver-Killed Bacteria: The "Zombies" Effect.” Scientific Reports 5:9555.
  • Wang, H., K. T. HO, K. G. Scheckel, F. Wu, M. G. Cantwell, D. R. Katz, D. B. Horowitz, W. S. Boothman, R. M. Burgess. 2014. “Toxicity, Bioaccumulation, and Biotransformation of Silver Nanoparticles in Marine Organisms.” Environmental Science & Technology 48:13711–13717. doi:10.1021/es502976y
  • Wang, F., V. N. Richards, S. P. Shields, and W. E. Buhro. 2014. “Kinetics and Mechanisms of Aggregative Nanocrystal Growth.” Chemistry of Materials 26 (1):5–21. doi:10.1021/cm402139r
  • Widdel, F., G.-W. Kohring, and F. Mayer. 1983. “Studies on Dissimilatory Sulfate-Reducing Bacteria That Decompose Fatty Acids.” Archives of Microbiology 134 (4):286–294. doi:10.1007/BF00407804
  • Williams, D. R., J. J. Rowe, P. Romero, and R. G. Eagon. 1978. “Denitrifying Pseudomonas aeruginosa: some Parameters of Growth and Active Transport.” Applied and Environmental Microbiology 36:257–263.
  • Woehl, T. J., C. Park, J. E. Evans, I. Arslan, W. D. Ristenpart, and N. D. Browning. 2014. “Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate.” Nano Letters 14:373–378.
  • Wu, M., T. Guina, M. Brittnacher, H. Nguyen, J. Eng, and S. I. Miller. 2005. “The Pseudomonas aeruginosa Proteome during Anaerobic Growth.” Journal of Bacteriology 187 (23):8185–8190. doi:10.1128/JB.187.23.8185-8190.2005
  • Xiu, Z.-M., Q.-B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez. 2012. “Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles.” Nano Letters 12 (8):4271–4275. doi:10.1021/nl301934w
  • Yin, Y.,. J. Liu, and G. Jiang. 2012. “Sunlight-Induced Reduction of Ionic Ag and Au to Metallic Nanoparticles by Dissolved Organic Matter.” ACS Nano 6 (9):7910–7919. doi:10.1021/nn302293r
  • Zhang, X., C.-W. Yang, H.-Q. Yu, and G.-P. Sheng. 2016. “Light-Induced Reduction of Silver Ions to Silver Nanoparticles in Aquatic Environments by Microbial Extracellular Polymeric Substances (EPS).” Water Research 106:242–248. doi:10.1016/j.watres.2016.10.004
  • Zheng, C. R., S. LI, C. Ye, X. LI, C. Zhang, X. Yu. 2016. “Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.” Environmental Science & Technology 50:7144–7151. doi:10.1021/acs.est.6b00788
  • Zhou, W., Y.-L. Liu, A. M. Stallworth, C. Ye, and J. J. Lenhart. 2016. “Effects of pH, Electrolyte, Humic Acid, and Light Exposure on the Long-Term Fate of Silver Nanoparticles.” Environmental Science & Technology 50:12214–12224. doi:10.1021/acs.est.6b03237
  • Zou, X., P. Li, J. Lou, X. Fu, and H. Zhang. 2017. “Stability of Single Dispersed Silver Nanoparticles in Natural and Synthetic Freshwaters: Effects of Dissolved Oxygen.” Environmental Pollution 230:674–682. doi:10.1016/j.envpol.2017.07.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.