2,565
Views
25
CrossRef citations to date
0
Altmetric
Articles

Application of Bayesian networks in determining nanoparticle-induced cellular outcomes using transcriptomics

, , , , &
Pages 827-848 | Received 11 Jan 2019, Accepted 09 Mar 2019, Published online: 29 May 2019

References

  • Achcar, J. A., R. Brookmeyer, and W. G. Hunter. 1985. “An Application of Bayesian Analysis to Medical Follow-up data.” Statistics in Medicine 4 (4): 509–520.
  • Ahmad Khalili, A., and M. R. Ahmad. 2015. “A Review of Cell Adhesion Studies for Biomedical and Biological Applications.” International Journal of Molecular Sciences 16 (8): 18149–18184. doi:10.3390/ijms160818149.
  • Ajdary, M., M. Moosavi, M. Rahmati, M. Falahati, M. Mahboubi, A. Mandegary, S. Jangjoo, R. Mohammadinejad, and R. Varma. 2018. “Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity.” Nanomaterials 8 (9): 634.
  • Alexiou, A.,. V. D. Mantzavinos, N. H. Greig, and M. A. Kamal. 2017. “A Bayesian Model for the Prediction and Early Diagnosis of Alzheimer's Disease.” Frontiers in Aging Neuroscience 9 (77).
  • Bai, X., F. Liu, Y. Liu, C. Li, S. Wang, H. Zhou, W. Wang, H. Zhu, D. A. Winkler, and B. Yan. 2017. “Toward a Systematic Exploration of Nano-Bio Interactions.” Toxicology and Applied Pharmacology 323: 66–73. doi:10.1016/j.taap.2017.03.011.
  • Bajak, E., M. Fabbri, J. Ponti, S. Gioria, I. Ojea-Jiménez, A. Collotta, V. Mariani, D. Gilliland, F. Rossi, and L. Gribaldo. 2015. “Changes in Caco-2 Cells Transcriptome Profiles upon Exposure to Gold Nanoparticles.” Toxicology Letters 233 (2): 187–199. doi:10.1016/j.toxlet.2014.12.008.
  • Bammler, T., R. P. Beyer, S. Bhattacharya, G. A. Boorman, A. Boyles, B. U. Bradford, R. E. Bumgarner, et al. 2005. “Standardizing Global Gene Expression Analysis between Laboratories and across Platforms.” Nature Methods 2: 351–356.
  • Bañares, M. A., A. Haase, L. Tran, V. Lobaskin, G. Oberdörster, R. Rallo, J. Leszczynski, et al. 2017. “CompNanoTox2015: novel Perspectives from a European Conference on Computational Nanotoxicology on Predictive Nanotoxicology.” Nanotoxicology 11 (7): 839–845. doi:10.1080/17435390.2017.1371351.
  • Bartczak, D., O. L. Muskens, T. Sanchez-Elsner, A. G. Kanaras, and T. M. Millar. 2013. “Manipulation of in Vitro Angiogenesis Using Peptide-Coated Gold Nanoparticles.” ACS Nano 7 (6): 5628–5636. doi:10.1021/nn402111z.
  • Belcastro, V., C. Poussin, Y. Xiang, M. Giordano, K. P. Tripathi, A. Boda, A. T. Balci, et al. 2018. “The Sbv IMPROVER Systems Toxicology Computational Challenge: Identification of Human and Species-Independent Blood Response Markers as Predictors of Smoking Exposure and Cessation Status.” Computational Toxicology 5: 38–51. doi:10.1016/j.comtox.2017.07.004.
  • Boon, E. M. J., and B. H. W. Faas. 2013. “Benefits and Limitations of Whole Genome versus Targeted Approaches for Noninvasive Prenatal Testing for Fetal Aneuploidies.” Prenatal Diagnosis 33 (6): 563–568. doi:10.1002/pd.4111.
  • Boué, S., T. Exner, S. Ghosh, V. Belcastro, J. Dokler, D. Page, A. Boda, et al. 2017. “Supporting Evidence-Based Analysis for Modified Risk Tobacco Products through a Toxicology Data-Sharing Infrastructure [Version 1; Referees: 1 Approved, 1 Approved with Reservations.” F1000Research 6.
  • Bouwmeester, H., J. Poortman, R. J. Peters, E. Wijma, E. Kramer, S. Makama, K. Puspitaninganindita, et al. 2011. “Characterization of Translocation of Silver Nanoparticles and Effects on Whole-Genome Gene Expression Using an in Vitro Intestinal Epithelium Coculture Model.” ACS Nano 5 (5): 4091–4103. doi:10.1021/nn2007145.
  • Braakhuis, H. M., M. V. Park, I. Gosens, W. H. De Jong, and F. R. Cassee. 2014. “Physicochemical Characteristics of Nanomaterials That Affect Pulmonary Inflammation.” Particle and Fibre Toxicology 11 (1): 18. doi:10.1186/1743-8977-11-18.
  • Buesen, R., B. N. Chorley, B. da Silva Lima, G. Daston, L. Deferme, T. Ebbels, T. W. Gant, et al. 2017. “Applying 'omics Technologies in Chemicals Risk Assessment: Report of an ECETOC Workshop.” Regulatory Toxicology and Pharmacology 91: S3–S13. doi:10.1016/j.yrtph.2017.09.002.
  • Cao, Y. 2018. The Toxicity of Nanoparticles to Human Endothelial Cells. In Cellular and Molecular Toxicology of Nanoparticles, edited by Q. Saquib, M. Faisal, A. A. Al-Khedhairy and A. A. Alatar. 59–69. Cham: Springer International Publishing.
  • Carlander, U., D. Li, O. Jolliet, C. Emond, and G. Johanson. 2016. “Toward a General Physiologically-Based Pharmacokinetic Model for Intravenously Injected Nanoparticles.” International Journal of Nanomedicine 11: 625–640.
  • Chawla, N. V., L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. 2002. “SMOTE: Synthetic Minority Oversampling TEchnique.” Journal of Artificial Intelligence Research 16: 321–357. doi:10.1613/jair.953.
  • Chen, G., M. G. Vijver, Y. Xiao, and W. J. G. M. Peijnenburg. 2017. “A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.” Materials 10 (9): 1013. doi:10.3390/ma10091013.
  • Chepelev, N. L., I. D. Moffat, S. Labib, J. Bourdon-Lacombe, B. Kuo, J. K. Buick, F. Lemieux, et al. 2015. “Integrating Toxicogenomics into Human Health Risk Assessment: Lessons Learned from the Benzo[a]Pyrene Case Study.” Critical Reviews in Toxicology 45 (1): 44–52. doi:10.3109/10408444.2014.973935.
  • Cho, W. S., R. Duffin, F. Thielbeer, M. Bradley, I. L. Megson, W. Macnee, C. A. Poland, C. L. Tran, and K. Donaldson. 2012. “Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal-Oxide Nanoparticles.” Toxicological Sciences 126 (2): 469–477. doi:10.1093/toxsci/kfs006.
  • Choi, J. S., M. K. Ha, T. X. Trinh, T. H. Yoon, and H.-G. Byun. 2018. Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources. Scientific Reports 8: 6110.
  • Chormunge, S., and S. Jena. 2018. “Correlation Based Feature Selection with Clustering for High Dimensional Data.” Journal of Electrical Systems and Information Technology 5 (3): 542–549. doi:10.1016/j.jesit.2017.06.004.
  • Cinicioglu, E. N., and G. Büyükuğur. 2014. How to Create Better Performing Bayesian Networks: A Heuristic Approach for Variable Selection. Cham: Springer International Publishing, 527–535.
  • Concu, R., V. V. Kleandrova, A. Speck-Planche, and M. N. D. S. Cordeiro. 2017. “Probing the Toxicity of Nanoparticles: A Unified in Silico Machine Learning Model Based on Perturbation Theory.” Nanotoxicology 11 (7): 891–906. doi:10.1080/17435390.2017.1379567.
  • De Stefano, D.,. R. Carnuccio, and M. C. Maiuri. 2012. “Nanomaterials Toxicity and Cell Death Modalities.” Journal of Drug Delivery 2012: 167896doi:10.1155/2012/167896.
  • Doshi, M., and S. Chaturvedi. 2014. “Correlation Based Feature Selection (CFS) Technique to Predict Student Performance.” International Journal of Computer Networks & Communications 6: 197–206. doi:10.5121/ijcnc.2014.6315.
  • Drasler, B., P. Sayre, K. G. Steinhäuser, A. Petri-Fink, and B. Rothen-Rutishauser. 2017. “In Vitro Approaches to Assess the Hazard of Nanomaterials.” NanoImpact 8: 99–116. doi:10.1016/j.impact.2017.08.002.
  • Drugan, M. M., and M. A. Wiering. 2010. “Feature Selection for Bayesian Network Classifiers Using the MDL-FS Score.” International Journal of Approximate Reasoning 51 (6): 695–717. doi:10.1016/j.ijar.2010.02.001.
  • Engin, A. B., D. Nikitovic, M. Neagu, P. Henrich-Noack, A. O. Docea, M. I. Shtilman, K. Golokhvast, and A. M. Tsatsakis. 2017. “Mechanistic Understanding of Nanoparticles’ Interactions with Extracellular Matrix: The Cell and Immune System.” Particle and Fibre Toxicology 14 (22).
  • Fan, R., M. Zhong, S. Wang, Y. Zhang, A. Andrew, M. Karagas, H. Chen, C. I. Amos, M. Xiong, and J. H. Moore. 2011. “Entropy-Based Information Gain Approaches to Detect and to Characterize Gene-Gene and Gene-Environment Interactions/Correlations of Complex Diseases.” Genetic Epidemiology 35 (7): 706–721. doi:10.1002/gepi.20621.
  • Franceschi, N., K. Paraskevopoulos, E. Waigmann, and M. Ramon. 2017. “Predictive Protein Toxicity and Its Use in Risk Assessment.” Trends in Biotechnology 35 (6): 483–486. doi:10.1016/j.tibtech.2017.03.010.
  • Friedman, N., M. Linial, I. Nachman, and D. Pe'er. 2000. “Using Bayesian Networks to Analyze Expression Data.” Journal of Computational Biology: a Journal of Computational Molecular Cell Biology 7 (3-4): 601–620. doi:10.1089/106652700750050961.
  • Fröhlich, E. 2017. “Role of Omics Techniques in the Toxicity Testing of Nanoparticles.” Journal of Nanobiotechnology 15 (1): 84doi:10.1186/s12951-017-0320-3.
  • Furxhi, I. 2019. Literature transcriptomics review and data of Nanoparticle Induced Cellular Outcomes. Journal [Online] Available at: https://nanohub.org/resources/30099.
  • Furxhi, I., F. Murphy, B. Sheehan, M. Mullins, and P. Mantecca. 2018. Predicting Nanomaterials toxicity pathways based on genome-wide transcriptomics studies using Bayesian networks. 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). 1–4.
  • Gámez, J. A., J. L. Mateo, and J. M. Puerta. 2011. “Learning Bayesian Networks by Hill Climbing: efficient Methods Based on Progressive Restriction of the Neighborhood.” Data Mining and Knowledge Discovery 22 (1-2): 106–148. doi:10.1007/s10618-010-0178-6.
  • George, J., R. Singh, Z. Mahmood, and Y. Shukla. 2010. “Toxicoproteomics: New Paradigms in Toxicology Research.” Toxicology Mechanisms and Methods 20 (7): 415–423. doi:10.3109/15376511003667842.
  • Gerber, A., M. Bundschuh, D. Klingelhofer, and D. A. Groneberg. 2013. “Gold Nanoparticles: recent Aspects for Human Toxicology.” Journal of Occupational Medicine and Toxicology 8 (1): 32. doi:10.1186/1745-6673-8-32.
  • Gerloff, K., B. Landesmann, A. Worth, S. Munn, T. Palosaari, and M. Whelan. 2017. “The Adverse Outcome Pathway Approach in Nanotoxicology.” Computational Toxicology 1: 3–11. doi:10.1016/j.comtox.2016.07.001.
  • Gonzalez-Diaz, H., S. Arrasate, A. Gomez-SanJuan, N. Sotomayor, E. Lete, L. Besada-Porto, and J. M. Ruso. 2013. “General Theory for Multiple Input-Output Perturbations in Complex Molecular Systems. 1. Linear QSPR Electronegativity Models in Physical, Organic, and Medicinal Chemistry.” Current Topics in Medicinal Chemistry 13 (14): 1713–1741. doi:10.2174/1568026611313140011.
  • González-Durruthy, M., L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, and C. R. Munteanu. 2017. “Experimental–Computational Study of Carbon Nanotube Effects on Mitochondrial Respiration: In Silico Nano-QSPR Machine Learning Models Based on New Raman Spectra Transform with Markov–Shannon Entropy Invariants.” Journal of Chemical Information and Modeling 57 (5): 1029–1044. doi:10.1021/acs.jcim.6b00458.
  • Grzincic, E. M., J. A. Yang, J. Drnevich, P. Falagan-Lotsch, and C. J. Murphy. 2015. “Global Transcriptomic Analysis of Model Human Cell Lines Exposed to Surface-Modified Gold Nanoparticles: The Effect of Surface Chemistry.” Nanoscale 7 (4): 1349–1362. doi:10.1039/C4NR05166A.
  • Ha, M. K., T. X. Trinh, J. S. Choi, D. Maulina, H. G. Byun, and T. H. Yoon. 2018. Toxicity Classification of Oxide Nanomaterials: Effects of Data Gap Filling and PChem Score-based Screening Approaches. Scientific Reports 8: 3141.
  • Hackley, V. A., G. Roebben, K. Ehara, S. Hankin, M. T. Postek, I. Lynch, W.-E. Fu, T. P. J. Linsinger, and A. F. Thünemann. 2013. “Nanoscale Reference Materials for Environmental, Health and Safety Measurements: needs, Gaps and Opportunities AU - Stefaniak, Aleksandr B.” Nanotoxicology 7: 1325–1337. doi:10.3109/17435390.2012.739664.
  • Hall, M. A., and L. A. Smith. 1998. Feature Subset Selection: A Correlation Based Filter Approach. Department of Computer Science. Hamilton, New Zealand: University of Waikato.
  • Hasin, Y., M. Seldin, and A. Lusis. 2017. “Multi-omics approaches to disease.” Genome Biology 18 (1): 83doi:10.1186/s13059-017-1215-1.
  • Hess, A., L. Wang-Lauenstein, A. Braun, S. N. Kolle, R. Landsiedel, M. Liebsch, L. Ma-Hock, et al. 2016. Prevalidation of the ex-vivo model PCLS for prediction of respiratory toxicity. Toxicology in vitro: an international journal published in association with BIBRA 32: 347–361. doi:10.1016/j.tiv.2016.01.006.
  • Hrdlickova, R., M. Toloue, and B. Tian. 2017. RNA-Seq methods for transcriptome analysis. Wiley interdisciplinary reviews RNA 8:10.1002/wrna.1364.
  • Hristozov, D. R., A. Zabeo, C. Foran, P. Isigonis, A. Critto, A. Marcomini, and I. Linkov. 2014. “A Weight of Evidence Approach for Hazard Screening of Engineered Nanomaterials.” Nanotoxicology 8 (1): 72–87. doi:10.3109/17435390.2012.750695.
  • Huang, Y. W., M. Cambre, and H. J. Lee. 2017. “The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms.” International Journal of Molecular Sciences 18 (12): 2702. doi:10.3390/ijms18122702.
  • Hussain, S., S. Garantziotis, F. Rodrigues-Lima, J.-M. Dupret, A. Baeza-Squiban, and S. Boland. 2014. “Intracellular Signal Modulation by Nanomaterials.” Advances in Experimental Medicine and Biology 811: 111–134.
  • Jagiello, K., M. Grzonkowska, M. Swirog, L. Ahmed, B. Rasulev, A. Avramopoulos, M. G. Papadopoulos, J. Leszczynski, and T. Puzyn. 2016. “Advantages and Limitations of Classic and 3D QSAR Approaches in nano-QSAR Studies Based on Biological Activity of Fullerene Derivatives.” Journal of Nanoparticle Research 18: 256.
  • Jaworska, J.,. S. Gabbert, and T. Aldenberg. 2010. “Towards Optimization of Chemical Testing under REACH: A Bayesian Network Approach to Integrated Testing Strategies.” Regulatory Toxicology and Pharmacology 57 (2-3): 157–167. doi:10.1016/j.yrtph.2010.02.003.
  • Jaworska, J.,. Y. Dancik, P. Kern, F. Gerberick, and A. Natsch. 2013. “Bayesian Integrated Testing Strategy to Assess Skin Sensitization Potency: From Theory to Practice.” Journal of Applied Toxicology 33: 1353–1364
  • Judson, R. S., R. J. Kavlock, R. W. Setzer, E. A. Cohen Hubal, M. T. Martin, T. B. Knudsen, K. A. Houck, et al. 2011. “Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment.” Chemical Research in Toxicology 24 (4): 451–462. doi:10.1021/tx100428e.
  • Kang, Y., J. Liu, B. Song, X. Feng, L. Ou, L. Wei, X. Lai, and L. Shao. 2016. “Potential Links between Cytoskeletal Disturbances and Electroneurophysiological Dysfunctions Induced in the Central Nervous System by Inorganic Nanoparticles.” Cellular Physiology and Biochemistry 40 (6): 1487–1505. doi:10.1159/000453200.
  • Karegowda, A. G., A. S. Manjunath, and M. A. Jayaram. 2010. “Comparative Study of Attribute Selection Using Gain Ratio and Correlation Based Feature Selection.” International Journal of Information Technology and Knowledge Management 2: 271–277.
  • Kawata, K., M. Osawa, and S. Okabe. 2009. “In Vitro Toxicity of Silver Nanoparticles at Noncytotoxic Doses to HepG2 Human Hepatoma Cells.” Environmental Science & Technology 43: 6046–6051. doi:10.1021/es900754q.
  • Kinaret, P., V. Marwah, V. Fortino, M. Ilves, H. Wolff, L. Ruokolainen, P. Auvinen, et al. 2017. “Network Analysis Reveals Similar Transcriptomic Responses to Intrinsic Properties of Carbon Nanomaterials in Vitro and in Vivo.” ACS Nano 11 (4): 3786–3796. doi:10.1021/acsnano.6b08650.
  • Kleandrova, V. V., F. Luan, H. González-Díaz, J. M. Ruso, A. Melo, A. Speck-Planche, and M. N. D. S. Cordeiro. 2014a. “Computational Ecotoxicology: Simultaneous Prediction of Ecotoxic Effects of Nanoparticles under Different Experimental Conditions.” Environment International 73: 288–294. doi:10.1016/j.envint.2014.08.009.
  • Kleandrova, V. V., F. Luan, H. González-Díaz, J. M. Ruso, A. Speck-Planche, and M. N. D. S. Cordeiro. 2014b. “Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation Model for Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated Nanoparticles under Multiple Experimental Conditions.” Environmental Science & Technology 48: 14686–14694. doi:10.1021/es503861x.
  • Kohavi, R., and G. H. John. 1997. “Wrappers for Feature Subset Selection.” Artificial Intelligence 97 (1-2): 273–324. doi:10.1016/S0004-3702(97)00043-X.
  • Labib, S., A. Williams, C. L. Yauk, J. K. Nikota, H. Wallin, U. Vogel, S. Halappanavar. 2016. “Nano-Risk Science: application of Toxicogenomics in an Adverse Outcome Pathway Framework for Risk Assessment of Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 13: 15.
  • Lerner, B., and R. Malka. 2011. “Investigation of the K2 Algorithm in Learning Bayesian Network Classifiers.” Applied Artificial Intelligence 25 (1): 74–96. doi:10.1080/08839514.2011.529265.
  • Li, M., and J. Reineke. 2012. Physiologically Based Pharmacokinetic Modeling for Nanoparticle Toxicity Study. In: Nanotoxicity: Methods and Protocols, edited by J. Reineke. 369–382. Totowa, NJ: Humana Press.
  • Li, S.-D., and L. Huang. 2008. “Pharmacokinetics and Biodistribution of Nanoparticles.” Molecular Pharmaceutics 5 (4): 496–504. doi:10.1021/mp800049w.
  • Lin, E., and H. Y. Lane. 2017. “Machine Learning and Systems Genomics Approaches for Multi-Omics Data.” Biomarker Research 5: 2. doi:10.1186/s40364-017-0082-y.
  • Luan, F., V. V. Kleandrova, H. González-Díaz, J. M. Ruso, A. Melo, A. Speck-Planche, and M. N. D. S. Cordeiro. 2014. “Computer-Aided Nanotoxicology: assessing Cytotoxicity of Nanoparticles under Diverse Experimental Conditions by Using a Novel QSTR-Perturbation Approach.” Nanoscale 6 (18): 10623–10630. doi:10.1039/C4NR01285B.
  • Luechtefeld, T., D. Marsh, C. Rowlands, and T. Hartung. 2018. “Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility.” Toxicological Sciences 165 (1): 198–212. doi:10.1093/toxsci/kfy152.
  • Ma, D. D., and W.-X. Yang. 2016. “Engineered Nanoparticles Induce Cell Apoptosis: potential for Cancer Therapy.” Oncotarget 7: 40882–40903.
  • Marchese Robinson, R. L., I. Lynch, W. Peijnenburg, J. Rumble, F. Klaessig, C. Marquardt, H. Rauscher, et al. 2016. “How Should the Completeness and Quality of Curated Nanomaterial Data Be Evaluated?.” Nanoscale 8: 9919–9943. doi:10.1039/C5NR08944A.
  • Marvin, H. J. P., Y. Bouzembrak, E. M. Janssen, M. van der Zande, F. Murphy, B. Sheehan, M. Mullins, et al. 2017. “Application of Bayesian Networks for Hazard Ranking of Nanomaterials to Support Human Health Risk Assessment.” Nanotoxicology 11 (1): 123–133. doi:10.1080/17435390.2016.1278481.
  • Matthews, B. W. 1975. “Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme.” Biochimica et Biophysica Acta (BBA) - Protein Structure 405 (2): 442–451. doi:10.1016/0005-2795(75)90109-9.
  • McDermott, J. E., J. Wang, H. Mitchell, B.-J. Webb-Robertson, R. Hafen, J. Ramey, K. D. Rodland, et al. 2013. “Challenges in Biomarker Discovery: Combining Expert Insights with Statistical Analysis of Complex Omics Data.” Expert Opinion on Medical Diagnostics 7 (1): 37–51. doi:10.1517/17530059.2012.718329.
  • Morgan, K. 2005. “Development of a Preliminary Framework for Informing the Risk Analysis and Risk Management of Nanoparticles.” Risk Analysis : An Official Publication of the Society for Risk Analysis 25 (6): 1621–1635. doi:10.1111/j.1539-6924.2005.00681.x.
  • Mukherjee, S. 2018. “Recent Progress toward Antiangiogenesis Application of Nanomedicine in Cancer Therapy.” Future Science OA 4 (7): FSO318. doi:10.4155/fsoa-2018-0051.
  • Murphy, F., B. Sheehan, M. Mullins, H. Bouwmeester, H. J. P. Marvin, Y. Bouzembrak, A. L. Costa, R. Das, V. Stone, and S. A. M. Tofail. 2016. “A Tractable Method for Measuring Nanomaterial Risk Using Bayesian Networks.” Nanoscale Research Letters 11: 503–503.
  • Napierska, D., L. C. Thomassen, D. Lison, J. A. Martens, and P. H. Hoet. 2010. “The Nanosilica Hazard: another Variable Entity.” Particle and Fibre Toxicology 7 (1): 39. doi:10.1186/1743-8977-7-39.
  • Nel, A., T. Xia, H. Meng, X. Wang, S. Lin, Z. Ji, and H. Zhang. 2013. “Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening.” Accounts of Chemical Research 46 (3): 607–621. doi:10.1021/ar300022h.
  • Nguyen, H. T., S. Petrović, and K. Franke. 2010. A Comparison of Feature-Selection Methods for Intrusion Detection. Berlin, Heidelberg: Springer Berlin Heidelberg, 242–255.
  • NRC. 2005. Committee on Communicating Toxicogenomics Information to Nonexperts. Communicating Toxicogenomics Information to Nonexperts: A Workshop Summary. Washington (DC): National Academies Press (US).
  • NRC. 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press.
  • OECD. 2017. Revised Guidance Document on Developing and Assessing Adverse Outcome Pathway. Series on testing and assessment. Environment Directorate of the OECD, Paris.
  • Peng, L., A. J. Barczak, R. A. Barbeau, Y. Xiao, T. J. LaTempa, C. A. Grimes, T. A. Desai, et al. 2010. “Whole Genome Expression Analysis Reveals Differential Effects of TiO2 Nanotubes on Vascular Cells.” Nano Letters 10 (1): 143–148. doi:10.1021/nl903043z.
  • Poynton, H. C., J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers, H. J. Allen, A. Loguinov, J. L. Heckman, and S. Govindasmawy. 2012. “Toxicogenomic Responses of Nanotoxicity in Daphnia Magna Exposed to Silver Nitrate and Coated Silver Nanoparticles.” Environmental Science & Technology 46: 6288–6296. doi:10.1021/es3001618.
  • Priddy, K. L., and E. P. Keller. 2005. Artificial Neural Networks: An Introduction.
  • Raies, A. B., and V. B. Bajic. 2016. “In Silico Toxicology: computational Methods for the Prediction of Chemical Toxicity.” Wiley Interdisciplinary Reviews: Computational Molecular Science 6 (2): 147–172. doi:10.1002/wcms.1240.
  • Riviere, J. E. 2009. “Pharmacokinetics of Nanomaterials: An Overview of Carbon Nanotubes, Fullerenes and Quantum Dots.” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 1: 26–34. doi:10.1002/wnan.24.
  • Römer, M., J. Eichner, U. Metzger, M. F. Templin, S. Plummer, H. Ellinger-Ziegelbauer, A. Zell, et al. 2014. “Cross-Platform Toxicogenomics for the Prediction of Non-Genotoxic Hepatocarcinogenesis in Rat.” PLoS One 9 (5): e97640. doi:10.1371/journal.pone.0097640.
  • Sahu, S. C., J. Zheng, J. J. Yourick, R. L. Sprando, and X. Gao. 2015. “Toxicogenomic Responses of Human Liver HepG2 Cells to Silver Nanoparticles.” Journal of Applied Toxicology 35 (10): 1160–1168. doi:10.1002/jat.3170.
  • Saliani, M., R. Jalal, and E. Kafshdare Goharshadi. 2016. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells. Nanomedicine Journal.
  • Sangi, M., K. T. Win, F. Shirvani, M.-R. Namazi-Rad, and N. Shukla. 2015. “Applying a Novel Combination of Techniques to Develop a Predictive Model for Diabetes Complications.” PLoS One 10 (4): e0121569. doi:10.1371/journal.pone.0121569.
  • Sauer, U. G., L. Deferme, L. Gribaldo, J. Hackermüller, T. Tralau, B. van Ravenzwaay, C. Yauk, et al. 2017. “The Challenge of the Application of 'omics Technologies in Chemicals Risk Assessment: Background and Outlook.” Regulatory Toxicology and Pharmacology 91: S14–S26. doi:10.1016/j.yrtph.2017.09.020.
  • Schmid, O., and F. R. Cassee. 2017. “On the Pivotal Role of Dose for Particle Toxicology and Risk Assessment: exposure Is a Poor Surrogate for Delivered dose.” Part Fibre Toxicology 14 (1): 52doi:10.1186/s12989-017-0233-1.
  • Schneider, M. V., and S. Orchard. 2011. Omics Technologies, Data and Bioinformatics Principles. In: Bioinformatics for Omics Data: Methods and Protocols, edited by B. Mayer. 3–30. Totowa, NJ: Humana Press.
  • Seixas, F. L., B. Zadrozny, J. Laks, A. Conci, and D. C. Muchaluat Saade. 2014. “A Bayesian Network Decision Model for Supporting the Diagnosis of Dementia, Alzheimer's Disease and Mild Cognitive Impairment.” Computers in Biology and Medicine 51: 140–158. doi:10.1016/j.compbiomed.2014.04.010.
  • Septiadi, D., F. Crippa, T. L. Moore, B. Rothen-Rutishauser, and A. Petri-Fink. 2018. “Nanoparticle–Cell Interaction: A Cell Mechanics Perspective.” Advanced Materials 30 (19): 1704463. doi:10.1002/adma.201704463.
  • Sheehan, B., F. Murphy, M. Mullins, I. Furxhi, A. Costa, F. Simeone, and P. Mantecca. 2018. “Hazard Screening Methods for Nanomaterials: A Comparative Study.” International Journal of Molecular Sciences 19 (3): 649. doi:10.3390/ijms19030649.
  • Shin, T. H., D. Y. Lee, H.-S. Lee, H. J. Park, M. S. Jin, M.-J. Paik, B. Manavalan, J.-S. Mo, and G. Lee. 2018. “Integration of Metabolomics and Transcriptomics in Nanotoxicity studies.” BMB Report 51 (1): 14–20.
  • Shukla, S. J., R. Huang, C. P. Austin, and M. Xia. 2010. “The Future of Toxicity Testing: A Focus on in Vitro Methods Using a Quantitative High-Throughput Screening Platform.” Drug Discovery Today 15 (23–24): 997–1007. doi:10.1016/j.drudis.2010.07.007.
  • Singh, N., B. Nelson, L. Scanlan, E. Coskun, P. Jaruga, and S. Doak. 2017. “Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways.” International Journal of Molecular Sciences 18 (7): 1515. doi:10.3390/ijms18071515.
  • Sizochenko, N., B. Rasulev, A. Gajewicz, V. Kuz'min, T. Puzyn, and J. Leszczynski. 2014. “From Basic Physics to Mechanisms of Toxicity: The “Liquid Drop” Approach Applied to Develop Predictive Classification Models for Toxicity of Metal Oxide Nanoparticles.” Nanoscale 6 (22): 13986–13993. doi:10.1039/C4NR03487B.
  • Snyder-Talkington, B. N., C. Dong, X. Zhao, J. Dymacek, D. W. Porter, M. G. Wolfarth, V. Castranova, et al. 2015. “Multi-Walled Carbon Nanotube-Induced Gene Expression in Vitro: concordance with in Vivo Studies.” Toxicology 328: 66–74. doi:10.1016/j.tox.2014.12.012.
  • Soenen, S. J. H., N. Nuytten, S. F. De Meyer, S. C. De Smedt, and M. De Cuyper. 2010. “High Intracellular Iron Oxide Nanoparticle Concentrations Affect Cellular Cytoskeleton and Focal Adhesion Kinase-Mediated Signaling.” Small 6 (7): 832–842. doi:10.1002/smll.200902084.
  • Speck-Planche, A., V. Kleandrova, V. F. Luan, and M. N. D. S. Cordeiro. 2015. “Computational Modeling in Nanomedicine: prediction of Multiple Antibacterial Profiles of Nanoparticles Using a Quantitative Structure–Activity Relationship Perturbation Model.” Nanomedicine 10 (2): 193–204. doi:10.2217/nnm.14.96.
  • Stagljar, I. 2016. “The Power of OMICs.” Biochemical and Biophysical Research Communications 479 (4): 607–609. doi:10.1016/j.bbrc.2016.09.095.
  • Stensberg, M. C., Q. Wei, E. S. McLamore, D. M. Porterfield, A. Wei, and M. S. Sepúlveda. 2011. “Toxicological Studies on Silver Nanoparticles: challenges and Opportunities in Assessment, Monitoring and Imaging.” Nanomedicine (London, England) 6 (5): 879–898. doi:10.2217/nnm.11.78.
  • Tsiliki, G., P. Nymark, P. Kohonen, R. Grafström, and H. Sarimveis. 2017. “Enriching Nanomaterials Omics Data: An Integration Technique to Generate Biological Descriptors.” Small Methods 1 (11): 1700139. “n/a.” doi:10.1002/smtd.201700139.
  • van der Zande, M., A. K. Undas, E. Kramer, M. P. Monopoli, R. J. Peters, D. Garry, E. C. Antunes Fernandes, et al. 2016. “Different Responses of Caco-2 and MCF-7 Cells to Silver Nanoparticles Are Based on Highly Similar Mechanisms of Action.” Nanotoxicology 10 (10): 1431–1441. doi:10.1080/17435390.2016.1225132.
  • Velikova, M., P. J. F. Lucas, M. Samulski, and N. Karssemeijer. 2013. “On the Interplay of Machine Learning and Background Knowledge in Image Interpretation by Bayesian Networks.” Artificial Intelligence in Medicine 57 (1): 73–86. doi:10.1016/j.artmed.2012.12.004.
  • Vietti, G., D. Lison, and S. van den Brule. 2016. “Mechanisms of Lung Fibrosis Induced by Carbon Nanotubes: Towards an Adverse Outcome Pathway (AOP).” Particle and Fibre Toxicology 13 (11)
  • Wang, S.-H., Y.-D. Zhang, Z. Dong, and P. Phillips. 2018. Classification Methods for Pathological Brain Detection. Pathological Brain Detection. Singapore: Springer Singapore, 119–147.
  • Warheit, D. B. 2018. “Hazard and Risk Assessment Strategies for Nanoparticle Exposures: how Far Have we Come in the past 10 years?” F1000Research 7: 376. doi:10.12688/f1000research.12691.1.
  • Winkler, D. A., E. Mombelli, A. Pietroiusti, L. Tran, A. Worth, B. Fadeel, and M. J. McCall. 2013. “Applying Quantitative Structure–Activity Relationship Approaches to Nanotoxicology: Current Status and Future Potential.” Toxicology 313 (1): 15–23. doi:10.1016/j.tox.2012.11.005.
  • Winkler, D. A., F. R. Burden, B. Yan, R. Weissleder, C. Tassa, S. Shaw, and V. C. Epa. 2014. “Modelling and Predicting the Biological Effects of Nanomaterials.” SAR and QSAR in Environmental Research 25 (2): 161–172. doi:10.1080/1062936X.2013.874367.
  • Worth, A., K. Aschberger, A. B. David, et al. 2017. Evaluation of the availability and applicability of computational approaches in the safety assessment of nanomaterials: Final report of the Nanocomput project. Luxembourg: Publications Office of the European Union: JRC.
  • Zabinski, J. W. 2017. Advancing environmental human health risk assessment through bayesian network analysis. Department of Environmental Sciences and Engineering. University of North Carolina at Chapel Hill 172.
  • Zabinski, J. W., G. Garcia-Vargas, M. Rubio-Andrade, R. C. Fry, and J. M. Gibson. 2016. “Advancing Dose-Response Assessment Methods for Environmental Regulatory Impact Analysis: A Bayesian Belief Network Approach Applied to Inorganic Arsenic.” Environmental Science & Technology Letters 3: 200–204. doi:10.1021/acs.estlett.6b00076.
  • Zabinski, J. W., K. J. Pieper, and J. M. Gibson. 2017. A Bayesian Belief Network Model Assessing the Risk to Wastewater Workers of Contracting Ebola Virus Disease During an Outbreak. Risk analysis: an official publication of the Society for Risk Analysis.
  • Zhang, W.D., Y. Zhao, H. F. Zhang, S. K. Wang, Z. H. Hao, J. Liu, Y. Q. Yuan, et al. 2016. “Alteration of Gene Expression by Zinc Oxide Nanoparticles or zinc sulfate in vivo and comparison with in vitro data: A harmonious case.” Theriogenology 86 (3): 850–861. doi:10.1016/j.theriogenology.2016.03.006.