378
Views
11
CrossRef citations to date
0
Altmetric
Articles

Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease

, , , , , , , , & show all
Pages 77-96 | Received 15 Feb 2019, Accepted 02 Sep 2019, Published online: 26 Sep 2019

References

  • Ahn, J. H., H. G. Kim, B. H. Seo, Y. S., Choi, S. Y., Song, C. H., Bae, and Y. D. Kim. 2015. “Effect of Multi-Walled Carbon Nanotubes on MUC5AC and MUC5B Expression in Airway Epithelial Cells.” Korean Journal of Otorhinolaryngology-Head and Neck Surgery 58 (8): 552–557. doi:10.3342/kjorl-hns.2015.58.8.552.
  • Alber, A., S. E. Howie, W. A. Wallace, and N. Hirani. 2012. “The Role of Macrophages in Healing the Wounded Lung.” International Journal of Experimental Pathology 93 (4): 243–251. doi:10.1111/j.1365-2613.2012.00833.x.
  • Antunes, M. A., and P. R. Rocco. 2011. “Elastase-Induced Pulmonary Emphysema: Insights from Experimental Models.” Anais da Academia Brasileira de Ciências 83 (4): 1385–1395. doi:10.1590/S0001-37652011005000039.
  • Barnes, P. J. 2004. “Alveolar Macrophages as Orchestrators of COPD.” Journal of Chronic Obstructive Pulmonary Disease 1(1): 59–70. doi:10.1081/COPD-120028701.
  • Barnes, P. J. 2008. “Immunology of Asthma and Chronic Obstructive Pulmonary Disease.” Nature Reviews Immunology 8(3): 183–192. doi:10.1038/nri2254.
  • Bazzan, E., G. Turato, M. Tinè, C. M. Radu, E. Balestro, C. Rigobello, D. Biondini, et al. 2017. “Dual Polarization of Human Alveolar Macrophages Progressively Increases with Smoking and COPD Severity.” Respiratory Research 18(40): 1–8. doi:10.1186/s12931-017-0522-0.
  • Beaty, S. R., C. E. Rose Jr., and S. S. Sung. 2007. “Diverse and Potent Chemokine Production by Lung CD11b High Dendritic Cells in Homeostasis and in Allergic Lung Inflammation.” The Journal of Immunology 178: 1882–1895. doi:10.4049/jimmunol.178.3.1882.
  • Boschetto, P., S. Quintavalle, D. Miotto, , N. L. Cascio, , E. Zeni, and C. E. Mapp. 2006. “Chronic Obstructive Pulmonary Disease (COPD) and Occupational Exposures.” Journal of Occupational Medicine and Toxicology 6: 1–6. doi:10.1186/1745-6673-1-11.
  • Bozinovski, S., M. Cross, R. Vlahos, J. E. Jones, K. Hsuu, P. A. Tessier, E. C. Reynolds, et al. 2005. “S100A8 Chemotactic Protein is Abundantly Increased, but Only a Minor Contributor to LPS-Induced, Steroid Resistant Neutrophilic Lung Inflammation in vivo.” Journal of Proteome Research 4(1): 136–145. doi:10.1021/pr049829t.
  • Bussy, C., C. Hadad, M. Prato, A. Bianco, and K. Kostarelos. 2016. “Intracellular Degradation of Chemically Functionalized Carbon Nanotubes Using a Long-Term Primary Microglial Culture Model.” Nanoscale 8: 590–601. doi:10.1039/C5NR06625E.
  • Caramori, G., C. Di Gregorio, I. Carlstedt, P. Casolari, I. Guzzinati, I. M. Adcock, P. J. Barnes, et al. 2004. “Mucin Expression in Peripheral Airways of Patients with Chronic Obstructive Pulmonary Disease.” Histopathology 45(5): 477–484. doi:10.1111/j.1365-2559.2004.01952.x.
  • Chortarea, S., M. J. Clift, D. Vanhecke, C. Endes, P. Wick, A. Petri-Fink, and B. Rothen-Rutishauser. 2015. “Repeated Exposure to Carbon Nanotube-Based Aerosols does not Affect the Functional Properties of a 3D Human Epithelial Airway Model.” Nanotoxicology 9(8): 983–993. doi:10.3109/17435390.2014.993344.
  • Clouter, A., D. Brown, D. Höhr, P. Borm, and K. Donaldson. 2001. “Inflammatory Effects of Respirable Quartz Collected in Workplaces versus Standard DQ12 Quartz: Particle Surface Correlates.” Toxicological Sciences 63(1): 90–98. doi:10.1093/toxsci/63.1.90.
  • Cornwell, W. D., V. Kim, X. Fan, M. E. Vega, F. V. Ramsey, G. J. Criner, and T. J. Rogers. 2018. “Activation and Polarization of Circulating Monocytes in Severe Chronic Obstructive Pulmonary Disease.” BMC Pulmonary Medicine 18(1). doi:10.1186/s12890-018-0664-y.
  • De Volder, M. F., S. H. Tawfick, R. H. Baughman, and A. J. Hart. 2013. “Carbon Nanotubes: Present and Future Commercial Applications.” Science 339(6119): 535–540. doi:10.1126/science.1222453.
  • Decramer, M., W. Janssens, and M. Miravitlles. 2012. “Chronic Obstructive Pulmonary Disease.” The Lancet 379(9823): 1341–1351. doi:10.1016/S0140-6736(11)60968-9.
  • del Rio, M., J. I. Rodriguez-Barbosa, E. Kremmer, and R. Förster. 2007. “CD103 − and CD103 + Bronchial Lymph Node Dendritic Cells Are Specialized in Presenting and Cross-Presenting Innocuous Antigen to CD4 + and CD8 + T Cells.” The Journal of Immunology 178: 6861–6866. doi:10.4049/jimmunol.178.11.6861.
  • Di Stefano, A., A. Capelli, M. Lusuardi, P. Balbo, C. Vecchio, P. Maestrelli, C. E. Mapp, L. M. Fabbri, C. F. Donner, and M. Saetta. 1998. “Severity of Airflow Limitation Is Associated with Severity of Airway Inflammation in Smokers.” American Journal of Respiratory and Critical Care Medicine 158(4): 1277–1285. doi:10.1164/ajrccm.158.4.9802078.
  • Donaldson, K., R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander. 2006. “Carbon Nanotubes: A Review of Their Properties in Relation to Pulmonary Toxicology and Workplace Safety.” Toxicological Sciences 92(1): 5–22. doi:10.1093/toxsci/kfj130.
  • Donaldson, K., F. A. Murphy, R. Duffin, and C. A. Poland. 2010. “Asbestos, Carbon Nanotubes and the Pleural Mesothelium: A Review of the Hypothesis Regarding the Role of Long Fibre Retention in the Parietal Pleura, Inflammation and Mesothelioma.” Particle and Fibre Toxicology 7(1): 5. doi:10.1186/1743-8977-7-5.
  • Dong, J., and Q. Ma. 2018. “Macrophage Polarization and Activation at the Interface of Multi-Walled Carbon Nanotube-Induced Pulmonary Inflammation and Fibrosis.” Nanotoxicology 12(2): 153–168. doi:10.1080/17435390.2018.1425501.
  • Dong, J., D. W. Porter, L. A. Batteli, M. G. Wolfarth, D. L. Richardson, and Q. Ma. 2015. “Pathologic and Molecular Profiling of Rapid-Onset Fibrosis and Inflammation Induced by Multi-Walled Carbon Nanotubes.” Archives of Toxicology 89(4): 621–633. doi:10.1007/s00204-014-1428-y.
  • Dumortier, H. 2013. “When Carbon Nanotubes Encounter the Immune System: Desirable and Undesirable Effects.” Advanced Drug Delivery Reviews 65(15): 2120–2126. doi:10.1016/j.addr.2013.09.005.
  • Ellinger-Ziegelbauer, H., and J. Pauluhn. 2009. “Pulmonary Toxicity of Multi-Walled Carbon Nanotubes (Baytubes®) Relative to α-Quartz Following a Single 6 h Inhalation Exposure of Rats and a 3 Months Post-Exposure Period.” Toxicology 266(1–3): 16–29. doi:10.1016/j.tox.2009.10.007.
  • Erdely, A., M. Dahm, B. T. Chen, P. C. Zeidler-Erdely, J. E. Fernback, M. E. Birch, D. E. Evans, et al. 2013. “Carbon Nanotube Dosimetry: From Workplace Exposure Assessment to Inhalation Toxicology.” Particle and Fibre Toxicology 10(1): 53. doi:10.1186/1743-8977-10-53.
  • Fadeel, B., V. Kagan, H. Krug, A. Shvedova, M. Svartengren, L. Tran, and L. Wiklund. 2007. “There’s Plenty of Room at the Forum: Potential Risks and Safety Assessment of Engineered Nanomaterials.” Nanotoxicology 1(2): 73–84. doi:10.1080/17435390701565578.
  • Finkelstein, R., R. S. Fraser, H. Ghezzo, and M. G. Cosio. 1995. “Alveolar Inflammation and Its Relation to Emphysema in Smokers.” American Journal of Respiratory and Critical Care Medicine 152(5): 1666. doi:10.1164/ajrccm.152.5.7582312.
  • Frankenberger, M., M. Menzel, R. Betz, G. Kassner, N. Weber, M. Kohlhaufl, K. Haussinger, and L. Ziegler-Heitbrock. 2004. “Characterization of a Population of Small Macrophages in Induced Sputum of Patients with Chronic Obstructive Pulmonary Disease and Healthy Volunteers.” Clinical and Experimental Immunology 138(3): 507–516. doi:10.1111/j.1365-2249.2004.02637.x.
  • Gangwal, S., J. S. Brown, A. Wang, K. A. Houck, D. J. Dix, R. J. Kavlock, and E. A. Hubal. 2011. “Informing Selection of Nanomaterial Concentrations for ToxCast In Vitro Testing Based on Occupational Exposure Potential.” Environmental Health Perspectives 119(11): 1539–1546. doi:10.1289/ehp.1103750.
  • Garnier, C. V., L. Filgueira, M. Wikstrom, M. Smith, J. A. Thomas, D. H. Strickland, P. G. Holt, and P. A. Stumbles. 2005. “Anatomical Location Determines the Distribution and Function of Dendritic Cells and Other APCs in the Respiratory Tract.” The Journal of Immunology 175(3): 1609–1618. doi:10.4049/jimmunol.175.3.1609.
  • Geurtsvankessel, C. H., and B. N. Lambrecht. 2008. “Division of Labor Between Dendritic Cell Subsets of the Lung.” Mucosal Immunology 1(6): 442–450. doi:10.1038/mi.2008.39.
  • Ghorani, V., M. H. Boskabady, M. R. Khazdair, and M. Kianmeher. 2017. “Experimental Animal Models for COPD: A Methodological Review.” Tobacco Induced Diseases 15: 1–13. doi:10.1186/s12971-017-0130-2.
  • Gordon, S., and A. Plüddemann. 2017. “Tissue Macrophages: Heterogeneity and Functions.” BMC Biology 15: 1–18. doi:10.1186/s12915-017-0392-4.
  • Grashoff, W. F., J. K. Sont, P. J. Sterk, P. S. Hiemstra, W. I. de Boer, J. Stolk, J. Han, and J. M. van Krieken. 1997. “Chronic Obstructive Pulmonary Disease: Role of Bronchiolar Mast Cells and Macrophages.” American Journal of Pathology 151(6): 1785–1790.
  • Guilliams, M., B. N. Lambrecht, and H. Hammad. 2013. “Division of Labor Between Lung Dendritic Cells and Macrophages in the Defense Against Pulmonary Infections.” Mucosal Immunology 6(3): 464–473. doi:10.1038/mi.2013.14.
  • Han, S. G., R. Andrews, and C. G. Gairola. 2010. “Acute Pulmonary Response of Mice to Multi-Wall Carbon Nanotubes.” Inhalation Toxicology 22(4): 340. doi:10.3109/08958370903359984.
  • Hiemstra, P. S. 2013. “Altered Macrophage Function in Chronic Obstructive Pulmonary Disease.” Annals of the American Thoracic Society 10: S180–S185. doi:10.1513/AnnalsATS.201305-123AW.
  • Hogg, J. C., F. Chu, S. Utokaparch, R. Woods, W. M. Elliott, L. Buzatu, R. M. Cherniack, et al. 2004. “The Nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease.” New England Journal of Medicine 350(26): 2645–2653. doi:10.1056/NEJMoa032158.
  • Kaku, Y., H. Imaoka, Y. Morimatsu, Y. Komohara, K. Ohnishi, H. Oda, S. Takenaka, et al. 2014. “Overexpression of CD163, CD204 and CD206 on Alveolar Macrophages in the Lungs of Patients with Severe Chronic Obstructive Pulmonary Disease.” PLoS ONE 9(1): e87400. doi:10.1371/journal.pone.0087400.
  • Kinaret, P., M. Ilves, V. Fortino, , E. Rydman, P. Karisola, A. Lähde, J. Koivisto, et al. 2017. “Inhalation and Oropharyngeal Aspiration Exposure to Rod-Like Carbon Nanotubes Induce Similar Airway Inflammation and Biological Responses in Mouse Lungs.” ACS Nano 11: 291–303. doi:10.1021/acsnano.6b05652.
  • Krug, H. F. 2014. “Nanosafety Research — Are We on the Right Track?” Angewandte Chemie 53: 12304–12319. doi:10.1002/anie.201403367.
  • Lungenliga Schweiz 2018. COPD. http://www.lungenliga.ch/uploads/tx_pubshop/COPD_Broschuere_01.pdf
  • Mercer, R. R., J. F. Scabilloni, A. F. Hubbs, L. A. Battelli, W. McKinney, S. Friend, M. G. Wolfarth, M. Andrew, V. Castranova, and D. W. Porter. 2013. “Distribution and Fibrotic Response Following Inhalation Exposure to Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 10(1): 33. doi:10.1186/1743-8977-10-33.
  • Mitchell, L. A., J. Gao, R. V. Wal, A. Gigliotti, S. W. Burchiel, and J. D. McDonald. 2007. “Pulmonary and Systemic Immune Response to Inhaled Multi-Walled Carbon Nanotubes.” Toxicological Sciences 100(1): 203–214. doi:10.1093/toxsci/kfm196.
  • Mitchell, L. A., F. T. Lauer, S. W. Burchiel, and J. D. McDonald. 2009. “Mechanisms for How Inhaled Multi-Walled Carbon Nanotubes Suppress Systemic Immune Function in Mice.” Nature Nanotechnology 4(7): 451–456. doi:10.1038/nnano.2009.151.
  • Mosser, D. M., and J. P. Edwards. 2008. “Exploring the Full Spectrum of Macrophage Activation.” Nature Reviews Immunology 8(12): 958–969. doi:10.1038/nri2448.
  • Mühlfeld, C., L. Knudsen, and M. Ochs. 2012. “Stereology and Morphometry of Lung Tissue”, In Cell Imaging Techniques, edited by Douglas J. Taatjes, Jürgen Roth, 367–390. Totowa, NJ: Humana Press.
  • Nathan, C. 2002. “Points of Control in Inflammation.” Nature 420(6917): 846–852. doi:10.1038/nature01320.
  • Ng, S. L., Y. J. Teo, Y. A. Setiagani, K. Karjalainen, and C. Ruedl. 2018. “Type 1 Conventional CD103 + Dendritic Cells Control Effector CD8 + T Cell Migration, Survival, and Memory Responses During Influenza Infection.” Frontiers in Immunology 9: 3043. doi:10.3389/fimmu.2018.03043.
  • Nygaard, U. C., J. S. Hansen, M. Samuelsen, T. Alberg, C. D. Marioara, and M. Løvik. 2009. “Single-Walled and Multi-Walled Carbon Nanotubes Promote Allergic Immune Responses in Mice.” Toxicological Sciences 109(1): 113–123. doi:10.1093/toxsci/kfp057.
  • Oberdörster, G. 2001. “Pulmonary Effects of Inhaled Ultrafine Particles.” International Archives of Occupational and Environmental Health 74(1): 1–8. doi:10.1007/s004200000185.
  • Oberdörster, G., V. Castranova, B. Asgharian, and P. Sayre. 2015. “Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry.” Journal of Toxicology and Environmental Health 18(3–4): 121–212. doi:10.1080/10937404.2015.1051611.
  • Porcheray, F., S. Viaud, A. C. Rimaniol, C. Léone, B. Samah, N. Dereuddre-Bosquet, D. Dormont, and G. Gras. 2005. “Macrophage Activation Switching: An Asset for the Resolution of Inflammation.” Clinical and Experimental Immunology 142: 481–489. doi:10.1111/j.1365-2249.2005.02934.x.
  • Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, et al. 2010. “Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes.” Toxicology 269(2–3): 136–147. doi:10.1016/j.tox.2009.10.017.
  • Poulsen, S. S., P. Jacksom, K. Kling, K. V. Knudsen, V. Skaug, Z. O. Kyjovska, B. L. Thomsom, et al. 2016. “Multi-Walled Carbon Nanotube Physicochemical Properties Predict Pulmonary Inflammation and Genotoxicity Pulmonary Inflammation and Genotoxicity.” Nanotoxicology 10: 1263–1275. doi:10.1080/17435390.2016.1202351.
  • Rothen-Rutishauser, B., F. Blank, C. Mühlfeld, and P. Gehr. 2008. “In Vitro Models of the Human Epithelial Airway Barrier to Study the Toxic Potential of Particulate Matter.” Expert Opinion on Drug Metabolism & Toxicology 4(8): 1075–1089. doi:10.1517/17425255.4.8.1075.
  • Ruckwardt T. J., K. M. Morabito, E. Bar-Haim, D. Nair, and B. S. Graham. 2018. “Neonatal Mice Possess Two Phenotypically and Functionally Distinct Lung-Migratory CD103 + Dendritic Cell Populations Following Respiratory Infection.” Mucosal Immunology 11(1): 186–198. doi:10.1038/mi.2017.28.
  • Russi, E W., P. Leuenberger, O. Brändli, J. G. Frey, E. Grebski, M. Gugger, A. Paky, et al. 2002. “Management of Chronic Obstructive Pulmonary Disease: The Swiss Guidelines. Official Guidelines of the Swiss Respiratory Society.” Swiss Medical Weekly 132(5–6): 67–78. doi:2002/05/smw-09959.
  • Ryman-Rasmussen J. P., M. F. Cesta, A. R. Brody, J. K. Shipley-Phillips, J. I. Everitt, E. W. Tewksbury, O. R. Moss et al. 2009. “Inhaled Carbon Nanotubes Reach the Subpleural Tissue in Mice.” Nature Nanotechnology 4(11): 747–751. doi:10.1038/nnano.2009.305.
  • Saha, S., and C. E. Brightling. 2006. “Eosinophilic Airway Inflammation in COPD.” International Journal of Chronic Obstructive Pulmonary Disease 1(1): 39–47.
  • Sajjan, U., S. Ganesan, A. T. Comstock, J. Shim, Q. Wang, D. R. Nagarkar, Y. Zhao, et al. 2009. “Elastase- and LPS-Exposed Mice Display Altered Responses to Rhinovirus Infection.” American Journal of Physiology-Lung Cellular and Molecular Physiology 297: L931–L944. doi:10.1152/ajplung.00150.2009.
  • Sargent, L. M., D. W. Porter, L. M. Staska, A. F. Hubbs, D. T. Lowry, L. Battelli, K. J. Siegrist, et al. 2014. “Promotion of Lung Adenocarcinoma Following Inhalation Exposure to Multi-Walled Carbon Nanotubes.” Particle and Fibre Toxicology 11: 3. doi:10.1186/1743-8977-11-3.
  • Schneider, J. P., and M. Ochs. 2013. “Alterations of Mouse Lung Tissue Dimensions During Processing for Morphometry: A Comparison of Methods.” American Journal of Physiology-Lung Cellular and Molecular Physiology 306: 341–350. doi:10.1152/ajplung.00329.2013.
  • Shekhar, S., Y. Peng, S. Wang, and X. Yang. 2018. “CD103+ Lung Dendritic C0ells (LDCs) Induce Stronger Th1/Th17 Immunity to a Bacterial Lung Infection Than CD11bhi LDCs.” Cellular & Molecular Immunology 15: 377–387. doi:10.1038/cmi.2016.68.
  • Soler-Cataluña, J. J., M. A. Martínez-García, P. Román Sánchez, E. Salcedo, M. Navarro, and R. Ochando. 2005. “Severe Acute Exacerbations and Mortality in Patients with Chronic Obstructive Pulmonary Disease.” Thorax 60: 925–931. doi:10.1136/thx.2005.040527.
  • Steiropoulos, P., K. Archontogeorgis, E. Nena, and D. Bouros. 2014. “New Developments in the Management of COPD: Clinical Utility of Indacaterol 75 μg.” International Journal of Chronic Obstructive Pulmonary Disease 9: 1–7. doi:10.2147/COPD.S24940.
  • Sung, S. S., S. M. Fu, C. E. Rose, F. Gaskin, S. T. Ju, and S. R. Beaty. 2006. “A Major Lung CD103 (AlphaE)-Beta7 Integrin-Positive Epithelial Dendritic Cell Population Expressing Langerin and Tight Junction Proteins.” The Journal of Immunology 176: 2161–2172. doi:10.4049/jimmunol.176.4.2161.
  • Szeto, G. L., and E. B. Lavik. 2016. “Materials Design at the Interface of Nanoparticles and Innate Immunity.” Journal of Materials Chemistry B 4(9): 1610–1618. doi:10.1039/C5TB01825K.
  • Thurnherr, T., D. S. Su, L. Diener, G. Weinberg, P. Manser, N. Pfänder, R. Arrigo, M. E. Schuster, P. Wick, and H. F. Krug. 2009. “Comprehensive Valuation of In Vitro Toxicity of Three Large-Scale Produced Carbon Nanotubes on Human Jurkat T Cells and a Comparison to Crocidolite Asbestos.” Nanotoxicology 3(4): 319–338. doi:10.3109/17435390903276958.
  • Thurnherr, T., C. Brandenberger, K. Fischer, L. Diener, P. Manser, X. Maeder-Althaus, J. P. Kaiser, H. F. Krug, B. Rothen-Rutishauser, and P. Wick. 2011. “A Comparison of Acute and Long-Term Effects of Industrial Multiwalled Carbon Nanotubes on Human Lung and Immune Cells In Vitro.” Toxicology Letters 200(3): 176–186. doi:10.1016/j.toxlet.2010.11.012.
  • Treumann, S. L. Ma-Hock, S. Gröters, R. Landsiedel, and B. van Ravenzwaay. 2013. “Additional Histopathologic Examination of the Lungs from a 3-Month Inhalation Toxicity Study with Multiwall Carbon Nanotubes in Rats.” Toxicological Sciences 134(1): 103–110. doi:10.1093/toxsci/kft089.
  • Tschanz, S. A., P. H. Burri, and E. R. Weibel. 2011. “A Simple Tool for Stereological Assessment of Digital Images: The STEPanizer.” Journal of Microscopy 243(1): 47–59. doi:10.1111/j.1365-2818.2010.03481.x.
  • Van Pottelberge, G., K. R. Bracke, G. F. Joos, and G. G. Brusselle. 2009. “The Role of Dendritic Cells in the Pathogenesis of COPD: Liaison Officers in the Front Line.” Journal of Chronic Obstructive Pulmonary Disease 6: 284–290.
  • Vlahos, R., and S. Bozinovski. 2014. “Role of Alveolar Macrophages in Chronic Obstructive Pulmonary Disease.” Frontiers in Immunology 5: 435. doi:10.3389/fimmu.2014.00435.
  • Walton, E. L. 2017. “Microbes Are Off the Menu: Defective Macrophage Phagocytosis in COPD.” Biomedical Journal 40 (6): 301–304. doi:10.1016/j.bj.2017.12.002.
  • Wang, X., P. Katwa, R. Podila, P. Chen, P. Chun Ke, A. M. Rao, D. M. Walters, C. J. Wingard, and J. M. Brown. 2011. “Multi-Walled Carbon Nanotube Instillation Impairs Pulmonary Function in C57BL/6 Mice.” Particle and Fibre Toxicology 8: 1–13. doi:10.1186/1743-8977-8-24.
  • Zhang, P., M. Martin, Q. B. Yang, S. M. Michalek, and J. Katz. 2004. “Role of B7 Costimulatory Molecules in Immune Responses and T-Helper Cell Differentiation in Response to Recombinant HagB from Porphyromonas gingivalis.” Infection and Immunity 72(2): 637–644. doi:10.1128/IAI.72.2.637.
  • Zosky, G. R., C. von Garnier, P. A. Stumbles, P. G. Holt, P. D. Sly, and D. J. Turner. 2004. “The Pattern of Methacholine Responsiveness in Mice Is Dependent on Antigen Challenge Dose.” Respiratory Research 5: 15. doi:10.1186/1465-9921-5-15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.