2,287
Views
7
CrossRef citations to date
0
Altmetric
Articles

Toxicological effects of zinc oxide nanoparticle exposure: an in vitro comparison between dry aerosol air-liquid interface and submerged exposure systems

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 494-510 | Received 28 Feb 2020, Accepted 25 Jan 2021, Published online: 12 Feb 2021

References

  • Ambade, S. B., R. S. Mane, A. V. Ghule, M. G. Takwale, A. Abhyankar, B. Cho, and S. H. Han. 2009. “Contact Angle Measurement: A Preliminary Diagnostic Method for Evaluating the Performance of ZnO Platelet-Based Dye-Sensitized Solar Cells.” Scripta Materialia 61 (1): 12–15. doi:10.1016/j.scriptamat.2009.02.011.
  • Aufderheide, M., S. Scheffler, N. Mohle, B. Halter, and D. Hochrainer. 2011. “Analytical In Vitro Approach for Studying Cyto- and Genotoxic Effects of Particulate Airborne Material.” Analytical and Bioanalytical Chemistry 401 (10): 3213–3220. doi:10.1007/s00216-011-5163-4.
  • Baggiolini, M., A. Walz, and S. L. Kunkel. 1989. “Neutrophil-Activating Peptide-1 Interleukin-8, a Novel Cytokine That Activates Neutrophils.” Journal of Clinical Investigation 84 (4): 1045–1049. doi:10.1172/JCI114265.
  • Basinas, I., A. S. Jimenez, K. S. Galea, M. VAN Tongeren, and F. Hurley. 2018. “A Systematic Review of the Routes and Forms of Exposure to Engineered Nanomaterials.” Annals of Work Exposures and Health 62 (6): 639–662. doi:10.1093/annweh/wxy048.
  • Calcabrini, A., S. Meschini, M. Marra, L. Falzano, M. Colone, B. DE Berardis, L. Paoletti, G. Arancia, and C. Fiorentini. 2004. “Fine Environmental Particulate Engenders Alterations in Human Lung Epithelial A549 Cells.” Environmental Research 95 (1): 82–91.
  • Cappellini, F., S. DI Bucchianico, V. Karri, S. Latvala, M. Malmlof, M. Kippler, K. Elihn, et al. 2020. “Dry Generation of CeO2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interface-Dosimetry Considerations and Comparison to Submerged Exposure.” Nanomaterials 10 (4): 618. doi:10.3390/nano10040618.
  • Chen, J. K., C. C. Ho, H. Chang, J. F. Lin, C. S. Yang, M. H. Tsai, H. T. Tsai, and P. P. Lin. 2015. “Particulate Nature of Inhaled Zinc Oxide Nanoparticles Determines Systemic Effects and Mechanisms of Pulmonary Inflammation in Mice.” Nanotoxicology 9 (1): 43–53. doi:10.3109/17435390.2014.886740.
  • Cho, W. S., R. Duffin, S. E. M. Howie, C. J. Scotton, W. A. H. Wallace, W. Macnee, M. Bradley, I. L. Megson, and K. Donaldson. 2011. “Progressive Severe Lung Injury by Zinc Oxide Nanoparticles; the Role of Zn2+ Dissolution inside Lysosomes.” Particle and Fibre Toxicology 8: 27.
  • Delaval, M., D. Egli, P. Schupfer, C. Benarafa, M. Geiser, and H. Burtscher. 2019. “Novel Instrument to Generate Representative e-Cigarette Vapors for Physicochemical Particle Characterization and In-Vitro Toxicity.” Journal of Aerosol Science 129: 40–52. doi:10.1016/j.jaerosci.2018.11.011.
  • Deloid, G., J. M. Cohen, T. Darrah, R. Derk, L. Rojanasakul, G. Pyrgiotakis, W. Wohlleben, and P. Demokritou. 2014. “Estimating the Effective Density of Engineered Nanomaterials for In Vitro Dosimetry.” Nature Communications 5 (1): 3514. doi:10.1038/ncomms4514.
  • Deshmane, S. L., S. Kremlev, S. Amini, and B. E. Sawaya. 2009. “Monocyte Chemoattractant Protein-1 (MCP-1): An Overview.” Journal of Interferon & Cytokine Research 29 (6): 313–326. doi:10.1089/jir.2008.0027.
  • Doryab, A., S. Tas, M. B. Taskin, L. Yang, A. Hilgendorff, J. Groll, D. E. Wagner, and O. Schmid. 2019. “Evolution of Bioengineered Lung Models: Recent Advances and Challenges in Tissue Mimicry for Studying the Role of Mechanical Forces in Cell Biology.” Advanced Functional Materials 29 (39): 1903114. doi:10.1002/adfm.201903114.
  • Fulda, S., A. M. Gorman, O. Hori, and A. Samali. 2010. “Cellular Stress Responses: Cell Survival and Cell Death.” International Journal of Cell Biology 2010: 1–23. 2010. doi:10.1155/2010/214074.
  • Geiser, M., N. Jeannet, M. Fierz, and H. Burtscher. 2017. “Evaluating Adverse Effects of Inhaled Nanoparticles by Realistic In Vitro Technology.” Nanomaterials 7 (2): 49.
  • Gohlsch, K., H. Muckter, D. Steinritz, M. Aufderheide, S. Hoffmann, T. Gudermann, and A. Breit. 2019. “Exposure of 19 Substances to Lung A549 Cells at the Air Liquid Interface or under Submerged Conditions Reveals High Correlation between Cytotoxicity In Vitro and CLP Classifications for Acute Lung Toxicity.” Toxicology Letters 316: 119–126. doi:10.1016/j.toxlet.2019.09.014.
  • Hilton, G., H. Barosova, A. Petri-Fink, B. Rothen-Rutishauser, and M. Bereman. 2019. “Leveraging Proteomics to Compare Submerged versus Air-Liquid Interface Carbon Nanotube Exposure to a 3D Lung Cell Model.” Toxicology In Vitro 54: 58–66. doi:10.1016/j.tiv.2018.09.010.
  • Hu, Y., Y. H. Sheng, X. L. Ji, P. Liu, L. M. Tang, G. Chen, and G. L. Chen. 2020. “Comparative anti-Inflammatory Effect of Curcumin at Air-Liquid Interface and Submerged Conditions Using Lipopolysaccharide Stimulated Human Lung Epithelial A549 Cells.” Pulmonary Pharmacology & Therapeutics 63: 101939. doi:10.1016/j.pupt.2020.101939.
  • Jeannet, N., M. Fierz, M. Kalberer, H. Burtscher, and M. Geiser. 2015. “Nano Aerosol Chamber for In-Vitro Toxicity (NACIVT) Studies.” Nanotoxicology 9 (1): 34–42. doi:10.3109/17435390.2014.886739.
  • Jeannet, N., M. Fierz, S. Schneider, L. Kunzi, N. Baumlin, M. Salathe, H. Burtscher, and M. Geiser. 2016. “Acute Toxicity of Silver and Carbon Nanoaerosols to Normal and Cystic Fibrosis Human Bronchial Epithelial Cells.” Nanotoxicology 10 (3): 279–291. doi:10.3109/17435390.2015.1049233.
  • Ji, J., A. Hedelin, M. Malmlof, V. Kessler, G. Seisenbaeva, P. Gerde, and L. Palmberg. 2017. “Development of Combining of Human Bronchial Mucosa Models with XposeALI (R) for Exposure of Air Pollution Nanoparticles.” PLos One 12 (1): e0170428.
  • Jiang, C. J., G. R. Aiken, and H. Hsu-Kim. 2015. “Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.” Environmental Science & Technology 49 (19): 11476–11484. doi:10.1021/acs.est.5b02406.
  • Kumar, S. A., and S. M. Chen. 2008. “Nanostructured Zinc Oxide Particles in Chemically Modified Electrodes for Biosensor Applications.” Analytical Letters 41 (2): 141–158. doi:10.1080/00032710701792612.
  • Larsen, S. T., E. Da Silva, J. S. Hansen, A. C. O. Jensen, I. K. Koponen, and J. B. Sorli. 2020. “Acute Inhalation Toxicity after Inhalation of ZnO Nanoparticles: Lung Surfactant Function Inhibition In Vitro Correlates with Reduced Tidal Volume in Mice.” International Journal of Toxicology 39 (4): 321–327. doi:10.1177/1091581820933146.
  • Lenz, A. G., E. Karg, E. Brendel, H. Hinze-Heyn, K. L. Maier, O. Eickelberg, T. Stoeger, and O. Schmid. 2013. “Inflammatory and Oxidative Stress Responses of an Alveolar Epithelial Cell Line to Airborne Zinc Oxide Nanoparticles at the Air-Liquid Interface: A Comparison with Conventional, Submerged Cell-Culture Conditions.” BioMed Research International 2013: 652632. doi:10.1155/2013/652632.
  • Lenz, A. G., E. Karg, B. Lentner, V. Dittrich, C. Brandenberger, B. Rothen-Rutishauser, H. Schulz, G. A. Ferron, and O. Schmid. 2009. “A Dose-Controlled System for Air-Liquid Interface Cell Exposure and Application to Zinc Oxide Nanoparticles.” Particle and Fibre Toxicology 6 (1): 32. doi:10.1186/1743-8977-6-32.
  • Lewicka, Z. A., A. F. Benedetto, D. N. Benoit, W. W. Yu, J. D. Fortner, and V. L. Colvin. 2011. “The Structure, Composition, and Dimensions of TiO2 and ZnO Nanomaterials in Commercial Sunscreens.” Journal of Nanoparticle Research 13 (9): 3607–3617. doi:10.1007/s11051-011-0438-4.
  • Loret, T., E. Peyret, M. Dubreuil, O. Aguerre-Chariol, C. Bressot, O. Le Bihan, T. Amodeo, et al. 2016. “Air-Liquid Interface Exposure to Aerosols of Poorly Soluble Nanomaterials Induces Different Biological Activation Levels Compared to Exposure to Suspensions.” Particle and Fibre Toxicology 13 (1): 58. doi:10.1186/s12989-016-0171-3.
  • Lucci, F., N. D. Castro, A. A. Rostami, M. J. Oldham, J. Hoeng, Y. B. Pithawalla, and A. K. Kuczaj. 2018. “Characterization and Modeling of Aerosol Deposition in Vitrocell (R) exposure Systems - Exposure Well Chamber Deposition Efficiency.” Journal of Aerosol Science 123: 141–160. doi:10.1016/j.jaerosci.2018.06.015.
  • Medina-Reyes, E. I., N. L. Delgado-Buenrostro, D. L. Leseman, A. Déciga-Alcaraz, R. He, E. R. Gremmer, P. H. B. Fokkens, J. O. Flores-Flores, F. R. Cassee, and Y. I. Chirino. 2020. “Differences in Cytotoxicity of Lung Epithelial Cells Exposed to Titanium Dioxide Nanofibers and Nanoparticles: Comparison of Air-Liquid Interface and Submerged Cell Cultures.” Toxicology In Vitro 65: 104798. doi:10.1016/j.tiv.2020.104798.
  • Mihai, C., W. B. Chrisler, Y. M. Xie, D. H. Hu, C. J. Szymanski, A. Tolic, J. A. Klein, J. N. Smith, B. J. Tarasevich, and G. Orr. 2015. “Intracellular Accumulation Dynamics and Fate of Zinc Ions in Alveolar Epithelial Cells Exposed to Airborne ZnO Nanoparticles at the Air-Liquid Interface.” Nanotoxicology 9 (1): 9–22. doi:10.3109/17435390.2013.859319.
  • Mills-Goodlet, R., M. Schenck, A. Chary, M. Geppert, T. Serchi, S. Hofer, N. Hofstatter, et al. 2020. “Biological Effects of Allergen-Nanoparticle Conjugates: Uptake and Immune Effects Determined on hAELVi Cells under Submergedvs.air-Liquid Interface Conditions.” Environmental Science: Nano 7 (7): 2073–2086. doi:10.1039/C9EN01353A.
  • Ohlinger, K., T. Kolesnik, C. Meindl, B. Galle, M. Absenger-Novak, D. Kolb-Lenz, and E. Frohlich. 2019. “Air-Liquid Interface Culture Changes Surface Properties of A549 Cells.” Toxicology In Vitro 60: 369–382. doi:10.1016/j.tiv.2019.06.014.
  • Panas, A., A. Comouth, H. Saathoff, T. Leisner, M. Al-Rawi, M. Simon, G. Seemann, et al. 2014. “Silica Nanoparticles Are Less Toxic to Human Lung Cells When Deposited at the Air-Liquid Interface Compared to Conventional Submerged Exposure.” Beilstein Journal of Nanotechnology 5: 1590–1602. doi:10.3762/bjnano.5.171.
  • Peng, Y. H., Y. C. Tsai, C. E. Hsiung, Y. H. Lin, and Y. H. Shih. 2017. “Influence of Water Chemistry on the Environmental Behaviors of Commercial ZnO Nanoparticles in Various Water and Wastewater Samples.” Journal of Hazardous Materials 322 (Pt B): 348–356. doi:10.1016/j.jhazmat.2016.10.003.
  • Piccinno, F., F. Gottschalk, S. Seeger, and B. Nowack. 2012. “Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World.” Journal of Nanoparticle Research 14: 1109.
  • Raemy, D. O., R. N. Grass, W. J. Stark, C. M. Schumacher, M. J. D. Clift, P. Gehr, and B. Rothen-Rutishauser. 2012. “Effects of Flame Made Zinc Oxide Particles in Human Lung Cells - a Comparison of Aerosol and Suspension Exposures.” Particle and Fibre Toxicology 9 (1): 33. doi:10.1186/1743-8977-9-33.
  • Secondo, L. E., N. J. Liu, and N. A. Lewinski. 2017. “Methodological Considerations When Conducting In Vitro, Air-Liquid Interface Exposures to Engineered Nanoparticle Aerosols.” Critical Reviews in Toxicology 47 (3): 225–262. doi:10.1080/10408444.2016.1223015.
  • Sharma, D., J. Rajput, B. S. Kaith, M. Kaur, and S. Sharma. 2010. “Synthesis of ZnO Nanoparticles and Study of Their Antibacterial and Antifungal Properties.” Thin Solid Films. 519 (3): 1224–1229. doi:10.1016/j.tsf.2010.08.073.
  • Srivastava, V., D. Gusain, and Y. C. Sharma. 2015. “Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles.” Industrial & Engineering Chemistry Research 54 (24): 6209–6233. doi:10.1021/acs.iecr.5b01610.
  • Stoehr, L. C., C. Endes, I. Radauer-Preiml, M. S. P. Boyles, E. Casals, S. Balog, M. Pesch, et al. 2015. “Assessment of a Panel of Interleukin-8 Reporter Lung Epithelial Cell Lines to Monitor the Pro-Inflammatory Response following Zinc Oxide Nanoparticle Exposure under Different Cell Culture Conditions.” Particle and Fibre Toxicology 12: 29. doi:10.1186/s12989-015-0104-6.
  • Svensson, C. R., S. S. Ameer, L. Ludvigsson, N. Ali, A. Alhamdow, M. E. Messing, J. Pagels, A. Gudmundsson, et al. 2016. “Validation of an Air-Liquid Interface Toxicological Set-up Using Cu, Pd, and Ag Well-Characterized Nanostructured Aggregates and Spheres.” Journal of Nanoparticle Research 18 (4): 86. doi:10.1007/s11051-016-3389-y.
  • Svensson, C. R., L. Ludvigsson, B. O. Meuller, M. L. Eggersdorfer, K. Deppert, M. Bohgard, J. H. Pagels, M. E. Messing, and J. Rissler. 2015. “Characteristics of Airborne Gold Aggregates Generated by Spark Discharge and High Temperature Evaporation Furnace: Mass-Mobility Relationship and Surface Area.” Journal of Aerosol Science 87: 38–52. doi:10.1016/j.jaerosci.2015.05.004.
  • Thongkam, W., K. Gerloff, D. VAN Berlo, C. Albrecht, and R. P. F. Schins. 2017. “Oxidant Generation, DNA Damage and Cytotoxicity by a Panel of Engineered Nanomaterials in Three Different Human Epithelial Cell Lines.” Mutagenesis 32 (1): 105–115. doi:10.1093/mutage/gew056.
  • Tollstadius, B. F., A. C. G. Da Silva, B. C. O. Pedralli, and M. C. Valadares 2019. “Carbendazim Induces Death in Alveolar Epithelial Cells: A Comparison between Submerged and at the Air-Liquid Interface Cell Culture.” Toxicology In Vitro 58: 78–85. doi:10.1016/j.tiv.2019.03.004.
  • Upadhyay, S., and L. Palmberg. 2018. “Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity.” Toxicological Sciences 164 (1): 21–30. doi:10.1093/toxsci/kfy053.
  • Vandebriel, R. J., and W. H. De Jong. 2012. “A Review of Mammalian Toxicity of ZnO Nanoparticles.” Nanotechnology, Science and Application 5: 61–71.
  • Wang, B., J. Zhang, C. Z. Chen, G. Xu, X. Qin, Y. L. Hong, D. D. Bose, F. Qiu, and Z. Zou. 2018. “The Size of Zinc Oxide Nanoparticles Controls Its Toxicity through Impairing Autophagic Flux in A549 Lung Epithelial Cells.” Toxicology Letters 285: 51–59. doi:10.1016/j.toxlet.2017.12.025.
  • Wang, P., N. W. Menzies, E. Lombi, B. A. Mckenna, B. Johannessen, C. J. Glover, P. Kappen, and P. M. Kopittke. 2013. “Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata).” Environmental Science & Technology 47 (23): 13822–13830. doi:10.1021/es403466p.
  • Warheit, D. B., C. M. Sayes, and K. L. Reed. 2009. “Nanoscale and Fine Zinc Oxide Particles: Can In Vitro Assays Accurately Forecast Lung Hazards following Inhalation Exposures?” Environmental Science & Technology 43 (20): 7939–7945. doi:10.1021/es901453p.
  • Xie, Y. M., N. G. Williams, A. Tolic, W. B. Chrisler, J. G. Teeguarden, B. L. S. Maddux, J. G. Pounds, A. Laskin, and G. Orr. 2012. “Aerosolized ZnO Nanoparticles Induce Toxicity in Alveolar Type II Epithelial Cells at the Air-Liquid Interface.” Toxicological Sciences 125 (2): 450–461. doi:10.1093/toxsci/kfr251.