1,185
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Polyethyleneimine/polyethylene glycol–conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: testing in frog embryo teratogenesis assay–Xenopus and mammalian tissue culture system

, , , , , , , , , , & show all
Pages 94-115 | Received 25 Jul 2022, Accepted 28 Feb 2023, Published online: 15 Mar 2023

References

  • Ahamed, M., M. J. Akhtar, M. A. M. Khan, Z. M. Alaizeri, and H. Alhadlaq. 2021. “Facile Synthesis of Zn-Doped Bi2O3 Nanoparticles and Their Selective Cytotoxicity towards Cancer Cells.” ACS Omega 6 (27): 17353–17361. doi:10.1021/acsomega.1c01467.
  • Arvizo, R. R., O. R. Miranda, M. A. Thompson, C. M. Pabelick, R. Bhattacharya, J. D. Robertson, V. M. Rotello, et al. 2010. “Effect of Nanoparticle Surface Charge at the Plasma Membrane and beyond.” Nano Letters 10 (7): 2543–2548. doi:10.1021/nl101140t.
  • Asharani, P. V., Y. Lianwu, Z. Gong, and S. Valiyaveettil. 2011. “Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.” Nanotoxicology 5 (1): 43–54. doi:10.3109/17435390.2010.489207.
  • Bacchetta, R., N. Santo, U. Fascio, E. Moschini, S. Freddi, G. Chirico, M. Camatini, et al. 2012. “Nano-Sized CuO, TiO(2) and ZnO Affect xenopus laevis Development.” Nanotoxicology 6 (4): 381–398. doi:10.3109/17435390.2011.579634.
  • Bonfanti, P., A. Colombo, F. Orsi, I. Nizzetto, M. Andrioletti, R. Bacchetta, P. Mantecca, et al. 2004. “Comparative Teratogenicity of Chlorpyrifos and Malathion on Xenopus laevis Development.” Aquatic Toxicology 70 (3): 189–200.
  • Bose, T., D. Latawiec, P. P. Mondal, and S. Mandal. 2014. “Overview of Nano-Drugs Characteristics for Clinical Application: The Journey from the Entry to the Exit Point.” Journal of Nanoparticle Research 16 (8): 2527. doi:10.1007/s11051-014-2527-7.
  • Boussif, O., F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, J. P. Behr, et al. 1995. “A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in-Vivo-Polyethylenimine.” Proceedings of the National Academy of Sciences 92 (16): 7297–7301. doi:10.1073/pnas.92.16.7297.
  • Browning, L. M., K. J. Lee, T. Huang, P. D. Nallathamby, J. E. Lowman, and X.-H. Nancy Xu. 2009. “Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments.” Nanoscale 1 (1): 138–152. doi:10.1039/b9nr00053d.
  • Cebrián, V., F. Martín-Saavedra, C. Yagüe, M. Arruebo, J. Santamaría, and N. Vilaboa. 2011. “Size-Dependent Transfection Efficiency of PEI-Coated Gold Nanoparticles.” Acta Biomaterialia 7 (10): 3645–3655. doi:10.1016/j.actbio.2011.06.018.
  • Chae, J.-P., M. S. Park, Y.-S. Hwang, B.-H. Min, S.-H. Kim, H.-S. Lee, M.-J. Park, et al. 2015. “Evaluation of Developmental Toxicity and Teratogenicity of Diclofenac Using Xenopus Embryos.” Chemosphere 120: 52–58. doi:10.1016/j.chemosphere.2014.05.063.
  • Chen, Z., L. Zhang, Y. He, and Y. Li. 2014. “Sandwich-Type Au-PEI/DNA/PEI-Dexa Nanocomplex for Nucleus-Targeted Gene Delivery in Vitro and in Vivo.” ACS Applied Materials & Interfaces 6 (16): 14196–14206. doi:10.1021/am503483w.
  • Cho, K., X. Wang, S. Nie, Z. G. Chen, and D. M. Shin. 2008. “Therapeutic Nanoparticles for Drug Delivery in Cancer.” Clinical Cancer Research 14 (5): 1310–1316. doi:10.1158/1078-0432.CCR-07-1441.
  • Cho, E. C., J. Xie, P. A. Wurm, and Y. Xia. 2009. “Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I-2/KI Etchant.” Nano Letters 9 (3): 1080–1084. doi:10.1021/nl803487r.
  • Cho, T. J., R. I. MacCuspie, J. Gigault, J. M. Gorham, J. T. Elliott, and V. A. Hackley. 2014. “Highly Stable Positively Charged Dendron-Encapsulated Gold Nanoparticles.” Langmuir 30 (13): 3883–3893. doi:10.1021/la5002013.
  • Cho, T. J., J. M. Pettibone, J. M. Gorham, T. M. Nguyen, R. I. MacCuspie, J. Gigault, V. A. Hackley, et al. 2015. “Unexpected Changes in Functionality and Surface Coverage for Au Nanoparticle PEI Conjugates: implications for Stability and Efficacy in Biological Systems.” Langmuir 31 (27): 7673–7683. doi:10.1021/acs.langmuir.5b01634.
  • Cho, T. J., and V. A. Hackley. 2018. Assessing the Chemical and Colloidal Stability of Functionalized Gold Nanoparticles. Gaithersburg, MD: National Institute of Standards and Technology. doi:10.6028/NIST.SP.1200-26.
  • Cho, T. J., J. M. Gorham, J. M. Pettibone, J. Liu, J. Tan, and V. A. Hackley. 2019. “Parallel Multi-Parameter Study of PEI-Functionalized Gold Nanoparticle Synthesis for Bio-Medical Applications: part 1—a Critical Assessment of Methodology, Properties, and Stability.” Journal of Nanoparticle Research 21 (8): 188. doi:10.1007/s11051-019-4621-3.
  • Cho, T. J., J. M. Gorham, J. M. Pettibone, J. Liu, J. Tan, and V. A. Hackley. 2020. “Parallel Multiparameter Study of Pei-Functionalized Gold Nanoparticle Synthesis for Biomedical Applications: Part 2. Elucidating the Role of Surface Chemistry and Polymer Structure in Performance.” Langmuir 36 (46): 14058–14069. doi:10.1021/acs.langmuir.0c02630.
  • Cho, T. J., V. Hackley, F. Yi, D. LaVan, V. Reipa, A. Tona, B. Nelson, C. Sims, and N. Farkas. 2021. Preparation, Characterization, and Biological Activity of Stability-Enhanced Polyethyleneimine-Conjugated Gold Nanoparticles (Au-PEI@NIST) for Biological Application. Gaithersburg, MD: National Institute of Standards and Technology. doi:10.6028/NIST.SP.1200-29.
  • Cooper, G. W., and J. M. Bedford. 1971. “Charge Density Change in the Vitelline Surface following Fertilization of the Rabbit Egg.” Journal of Reproduction and Fertility 25 (3): 431–436. doi:10.1530/jrf.0.0250431.
  • Daniel, M. C., and D. Astruc. 2004. “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology.” Chemical Reviews 104 (1): 293–346. doi:10.1021/cr030698+.
  • Dayal, N., M. Thakur, P. Patil, D. Singh, G. Vanage, and D. S. Joshi. 2016. “Histological and Genotoxic Evaluation of Gold Nanoparticles in Ovarian Cells of Zebrafish (Danio rerio).” Journal of Nanoparticle Research 18 (10): 291. doi:10.1007/s11051-016-3549-0.
  • De, M., P. S. Ghosh, and V. M. Rotello. 2008. “Applications of Nanoparticles in Biology.” Advanced Materials 20 (22): 4225–4241. doi:10.1002/adma.200703183.
  • Dedeh, A., A. Ciutat, M. Treguer-Delapierre, and J.-P. Bourdineaud. 2015. “Impact of Gold Nanoparticles on Zebrafish Exposed to a Spiked Sediment.” Nanotoxicology 9 (1): 71–80. doi:10.3109/17435390.2014.889238.
  • Ding, Y., Z. Jiang, K. Saha, C. S. Kim, S. T. Kim, R. F. Landis, V. M. Rotello, et al. 2014. “Gold Nanoparticles for Nucleic Acid Delivery.” Molecular Therapy 22 (6): 1075–1083. doi:10.1038/mt.2014.30.
  • Elbakry, A., E.-C. Wurster, A. Zaky, R. Liebl, E. Schindler, P. Bauer-Kreisel, T. Blunk, et al. 2012. “Layer-by-Layer Coated Gold Nanoparticles: size-Dependent Delivery of DNA into Cells.” Small 8 (24): 3847–3856. doi:10.1002/smll.201201112.
  • Fischer, D., T. Bieber, Y. Li, H. P. Elsässer, T. Kissel. 1999. “A Novel Non-Viral Vector for DNA Delivery Based on Low Molecular Weight, Branched Polyethylenimine: effect of Molecular Weight on Transfection Efficiency and Cytotoxicity.” Pharmacologyresearch 16 (8): 1273–1279.
  • Fischer, D., A. von Harpe, K. Kunath, H. Petersen, Y. Li, T. Kissel. 2002. “Copolymers of Ethylene Imine and N-(2-Hydroxyethyl)-Ethylene Imine as Tools to Study Effects of Polymer Structure on Physicochemical and Biological Properties of DNA Complexes.” Bioconjugate Chemistry 13 (5): 1124–1133.
  • Florea, B. I., C. Meaney, H. E. Junginger, and G. Borchard. 2002. “Transfection Efficiency and Toxicity of Polyethylenimine in Differentiated Calu-3 and Nondifferentiated COS-1 Cell Cultures.” AAPS PharmSci 4 (3): 1–11. doi:10.1208/ps040312.
  • Fort, D. J., and R. R. Paul. 2002. “Enhancing the Predictive Validity of Frog Embryo Teratogenesis Assay–Xenopus (FETAX).” Journal of Applied Toxicology 22 (3): 185–191.
  • Geffroy, B., C. Ladhar, S. Cambier, M. Treguer-Delapierre, D. Brèthes, and J.-P. Bourdineaud. 2012. “Impact of Dietary Gold Nanoparticles in Zebrafish at Very Low Contamination Pressure: The Role of Size, Concentration and Exposure Time.” Nanotoxicology 6 (2): 144–160. doi:10.3109/17435390.2011.562328.
  • Hamley, I. W. 2003. “Nanotechnology with Soft Materials.” Angewandte Chemie 42 (15): 1692–1712. doi:10.1002/anie.200200546.
  • Haque, E., and A. C. Ward. 2018. “Zebrafish as a Model to Evaluate Nanoparticle Toxicity.” Nanomaterials 8 (7): 561. doi:10.3390/nano8070561.
  • Hill, A. J., H. Teraoka, W. Heideman, and R. E. Peterson. 2005. “Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity.” Toxicological Sciences 86 (1): 6–19. doi:10.1093/toxsci/kfi110.
  • Hu, C. M. J., and L. F. Zhang. 2009. “Therapeutic Nanoparticles to Combat Cancer Drug Resistance.” Current Drug Metabolism 10 (8): 836–841. doi:10.2174/138920009790274540.
  • Hu, C., Q. Peng, F. Chen, Z. Zhong, and R. Zhuo. 2010. “Low Molecular Weight Polyethylenimine Conjugated Gold Nanoparticles as Efficient Gene Vectors.” Bioconjugate Chemistry 21 (5): 836–843. doi:10.1021/bc900374d.
  • Hu, Q., F. Guo, F. Zhao, G. Tang, and Z. Fu. 2017. “Cardiovascular Toxicity Assessment of Poly (Ethylene Imine)- Based Cationic Polymers on Zebrafish Model.” Journal of Biomaterials Science 28 (8): 768–780.
  • Hunter, A. C. 2006. “Molecular Hurdles in Polyfectin Design and Mechanistic Background to Polycation Induced Cytotoxicity.” Advanced Drug Delivery Reviews 58 (14): 1523–1531. doi:10.1016/j.addr.2006.09.008.
  • Katz, E., and I. Willner. 2004. “Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications.” Angewandte Chemie International Edition 43 (45): 6042–6108. doi:10.1002/anie.200400651.
  • Kim, K., H. B. Lee, J. W. Lee, H. K. Park, and K. S. Shin. 2008. “Self-Assembly of Poly(Ethylenimine)-Capped Au Nanoparticles at a Toluene-Water Interface for Efficient Surface-Enhanced Raman Scattering.” Langmuir 24 (14): 7178–7183. doi:10.1021/la800733x.
  • Kim, E. J., J. H. Yeum, H. D. Ghim, S. G. Lee, G. H. Lee, H. J. Lee, S. I. Han, et al. 2011. “Ultrasmall Polyethyleneimine-Gold Nanoparticles with High Stability.” Polymer Korea 35 (2): 161–165. doi:10.7317/pk.2011.35.2.161.
  • Kim, J. A., C. Åberg, G. de Cárcer, M. Malumbres, A. Salvati, and K. A. Dawson. 2013a. “Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest.” ACS Nano. 7 (9): 7483–7494. doi:10.1021/nn403126e.
  • Kim, K. T., T. Zaikova, J. E. Hutchison, and R. L. Tanguay. 2013b. “Gold Nanoparticles Disrupt Zebrafish Eye Development and Pigmentation.” Toxicology Science 133 (2): 275–288.
  • Kramer, G., H. M. Buchhammer, and K. Lunkwitz. 1998. “Investigation of the Stability of Surface Modification by Polyelectrolyte Complexes – Influence of Polyelectrolyte Complex Components and of Substrates and Media.” Colloids and Surfaces a-Physicochemical and Engineering Aspects 137 (1-3): 45–56.
  • Kratz, F., I. A. Müller, C. Ryppa, and A. Warnecke. 2008. “Prodrug Strategies in Anticancer Chemotherapy.” ChemMedChem. 3 (1): 20–53. doi:10.1002/cmdc.200700159.
  • Lee, M. Y., S. J. Park, K. Park, K. S. Kim, H. Lee, and S. K. Hahn. 2011a. “Target-Specific Gene Silencing of Layer-by-Layer Assembled Gold-Cysteamine/siRNA/PEI/HA Nanocomplex.” ACSnano 5 (8): 6138–6147.
  • Lee, Y., S. H. Lee, J. S. Kim, A. Maruyama, X. Chen, and T. G. Park. 2011b. “Controlled Synthesis of PEI-Coated Gold Nanoparticles Using Reductive Catechol Chemistry for siRNA Delivery.” Journal of Controlled Release 155 (1): 3–10.
  • Leibovich, A., T. Edri, S. L. Klein, S. A. Moody, and A. Fainsod. 2020. “Natural Size Variation among Embryos Leads to the Corresponding Scaling in Gene Expression.” Developmental Biology 462 (2): 165–179.
  • Lynch, I., H. Bouwmeester, H. Marvin, A. Casey, G. Chambers, M. Berges, and M. Clift. 2009. “First Approaches to Standard Protocolsand Reference Materials for the Assessment of Potential Hazardsassociated with Nanomaterials.” NanoImpactNet; Deliverable 1.4 under the European Commission’s Seventh Framework Programme, NMP4-CA-2008-218539, Grant Agreement 218539 for Project NanoImpactNet.
  • Maeda, H. 2001. “The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting.” In Advances in Enzyme Regulation, edited by G. Weber, Vol. 41, 189–207. Oxford: Pergamon-Elsevier Science Ltd.
  • Mandal, D., P. K. Moitra, S. Saha, and J. Basu. 2002. “Caspase 3 Regulates Phosphatidylserine Externalization and Phagocytosis of Oxidatively Stressed Erythrocytes.” FEBS Letters 513 (2–3): 184–188.
  • Martin, S. J., D. M. Finucane, G. P. Amarante-Mendes, G. A. O'Brien, and D. R. Green. 1996. “Phosphatidylserine Externalization during CD95-Induced Apoptosis of Cells and Cytoplasts Requires ICE/CED-3 Protease Activity.” The Journal of Biological Chemistry 271 (46): 28753–28756.
  • Moghimi, S. M., P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. 2005. “A Two-Stage Poly(Ethylenimine)-Mediated Cytotoxicity: Implications for Gene Transfer/Therapy.” Molecular Therapy 11 (6): 990–995. doi:10.1016/j.ymthe.2005.02.010.
  • Mouche, I., L. Malesic, and O. Gillardeaux. 2017. “FETAX Assay for Evaluation of Developmental Toxicity.” Methods in Molecularbiology 1641: 311–324.
  • Nations, S., M. Wages, J. E. Cañas, J. Maul, C. Theodorakis, and G. P. Cobb. 2011. “Acute Effects of Fe2O3, TiO2, ZnO and CuO Nanomaterials on Xenopus laevis.” Chemosphere 83 (8): 1053–1061. doi:10.1016/j.chemosphere.2011.01.061.
  • Neu, M., D. Fischer, and T. Kissel. 2005. “Recent Advances in Rational Gene Transfer Vector Design Based on Poly(Ethylene Imine) and Its Derivatives.” Journal of Gene Medicine 7 (8): 992–1009.
  • Niemeyer, C. M. 2001. “Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science.” Angewandte Chemie International Edition 40 (22): 4128–4158. doi:10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S.
  • Nelson, B. C., E. J. Petersen, B. J. Marquis, D. H. Atha, J. T. Elliott, D. Cleveland, S. S. Watson, et al. 2013. “NIST Gold Nanoparticle Reference Materials Do Not Induce Oxidative DNA Damage.” Nanotoxicology 7 (1): 21–29. doi:10.3109/17435390.2011.626537.
  • Note, C., S. Kosmella, and J. Koetz. 2006. “Poly(Ethyleneimine) as Reducing and Stabilizing Agent for the Formation of Gold Nanoparticles in w/o Microemulsions.” Colloids and Surfaces a-Physicochemical and Engineering Aspects 290 (1-3): 150–156.
  • Pan, Y., A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, et al. 2009. “Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage.” Small 5 (18): 2067–2076. doi:10.1002/smll.200900466.
  • Pyshnaya, I. A., K. V. Razum, J. E. Poletaeva, D. V. Pyshnyi, M. A. Zenkova, and E. I. Ryabchikova. 2014. “Comparison of Behaviour in Different Liquids and in Cells of Gold Nanorods and Spherical Nanoparticles Modified by Linear Polyethyleneimine and Bovine Serum Albumin.” BioMed Research International 2014: 908175.
  • Reznickova, A., N. Slavikova, Z. Kolska, K. Kolarova, T. Belinova, M. Hubalek Kalbacova, M. Cieslar, et al. 2019. “PEGylated Gold Nanoparticles: Stability, Cytotoxicity and Antibacterial Activity.” Colloids and Surfaces A 560: 26–34. doi:10.1016/j.colsurfa.2018.09.083.
  • Riebsell, M., and P. Hausen. 1991. The Early Development of Xenopus laevis: An Atlas of the Histology. Berlin: Verlag Der Zeitschrift Für Naturforschung.
  • Roebben, G., S. Ramirez-Garcia, V. A. Hackley, M. Roesslein, F. Klaessig, V. Kestens, I. Lynch, et al. 2011. “Interlaboratory Comparison of Size and Surface Charge Measurements on Nanoparticles Prior to Biological Impact Assessment.” Journal of Nanoparticle Research 13 (7): 2675–2687. doi:10.1007/s11051-011-0423-y.
  • Rosi, N. L., and C. A. Mirkin. 2005. “Nanostructures in Biodiagnostics.” Chemical Reviews 105 (4): 1547–1562. doi:10.1021/cr030067f.
  • Schubert, S., N. Keddig, R. Hanel, U. Kammann. 2014. “Microinjection into Zebrafish Embryos (Danio rerio) – a Useful Tool in Aquatic Toxicity Testing?” Environmental Sciences Europe 26: 32.
  • Singh, P., S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic. 2018. “Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer.” International Journal of Molecular Sciences 19 (7): 1979. doi:10.3390/ijms19071979.
  • Song, W.-J., J.-Z. Du, T.-M. Sun, P.-Z. Zhang, and J. Wang. 2010. “Gold Nanoparticles Capped with Polyethyleneimine for Enhanced siRNA Delivery 5.” Small 6 (2): 239–246. doi:10.1002/smll.200901513.
  • Sullivan, M. M. O., J. J. Green, and T. M. Przybycien. 2003. “Development of a Novel Gene Delivery Scaffold Utilizing Colloidal Gold-Polyethylenimine Conjugates for DNA Condensation.” Gene Therapy 10 (22): 1882–1890. doi:10.1038/sj.gt.3302083.
  • Sun, X. P., S. J. Dong, and E. K. Wang. 2005. “One-Step Preparation of Highly Concentrated Well-Stable Gold Colloids by Direct Mix of Polyelectrolyte and HAuCl4 Aqueous Solutions at Room Temperature.” Journal of Colloid and Interface Science 288 (1): 301–303.
  • Sunderman, F. W., Jr., M. C. Plowman, and S. M. Hopfer. 1991. “Embryotoxicity and Teratogenicity of Cadmium Chloride in Xenopus laevis, Assayed by the FETAX Procedure.” Annals Inclincallaboratoryscience 21 (6): 381–391.
  • Sztandera, K., M. Gorzkiewicz, and B. Klajnert-Maculewicz. 2019. “Gold Nanoparticles in Cancer Treatment.” Molecular Pharmaceutics 16 (1): 1–23. doi:10.1021/acs.molpharmaceut.8b00810.
  • Tao, Y., Z. Li, E. Ju, J. Ren, and X. Qu. 2013. “Polycations-Functionalized Water-Soluble Gold Nanoclusters: A Potential Platform for Simultaneous Enhanced Gene Delivery and Cell Imaging.” Nanoscale 5 (13): 6154–6160. doi:10.1039/c3nr01326j.
  • Taylor, U., S. Klein, S. Petersen, W. Kues, S. Barcikowski, and D. Rath. 2010. “Nonendosomal Cellular Uptake of Ligand-Free, Positively Charged Gold Nanoparticles.” Cytometry Part A 77A (5): 439–446.
  • Thomas, M., and A. M. Klibanov. 2003. “Conjugation to Gold Nanoparticles Enhances Polyethylenimine’s Transfer of Plasmid DNA into Mammalian Cells.” Proceedings of the National Academy of Sciences 100 (16): 9138–9143. doi:10.1073/pnas.1233634100.
  • Truong, L., K. S. Saili, J. M. Miller, J. E. Hutchison, and R. L. Tanguay. 2012. “Persistent Adult Zebrafish Behavioral Deficits Results from Acute Embryonic Exposure to Gold Nanoparticles.” Comparative Biochemistry and Physiology Part C 155 (2): 269–274. doi:10.1016/j.cbpc.2011.09.006.
  • Truong, L., S. C. Tilton, T. Zaikova, E. Richman, K. M. Waters, J. E. Hutchison, R. L. Tanguay, et al. 2013. “Surface Functionalities of Gold Nanoparticles Impact Embryonic Gene Expression Responses.” Nanotoxicology 7 (2): 192–201. doi:10.3109/17435390.2011.648225.
  • Truong, L., T. Zaikova, N. M. Schaeublin, K.-T. Kim, S. M. Hussain, J. E. Hutchison, R. L. Tanguay, et al. 2017. “Residual Weakly Bound Ligands Influence Biological Compatibility of Mixed Ligand Shell, Thiol-Stabilized Gold Nanoparticles.” Environmental Science 4 (8): 1634–1646. doi:10.1039/C7EN00363C.
  • Vetten, M. A., N. Tlotleng, D. Tanner Rascher, A. Skepu, F. K. Keter, K. Boodhia, L. A. Koekemoer, C. Andraos, R. Tshikhudo, and M. Gulumian. 2013. “Label-Free in Vitro Toxicity and Uptake Assessment of Citrate Stabilised Gold Nanoparticles in Three Cell Lines.” Particlefibre Toxicology 10: 50.
  • Wang, Y., J. E. Q. Quinsaat, T. Ono, M. Maeki, M. Tokeshi, T. Isono, K. Tajima, et al. 2020. “Enhanced Dispersion Stability of Gold Nanoparticles by the Physisorption of Cyclic Poly(Ethylene Glycol).” Nature Communications 11 (1): 6089. doi:10.1038/s41467-020-19947-8.
  • Whitesides, G. M. 2005. “Nanoscience, Nanotechnology, and Chemistry.” Small 1 (2): 172–179. [Database] doi:10.1002/smll.200400130.
  • Williams, J. R., J. R. Rayburn, G. R. Cline, R. Sauterer, and M. Friedman. 2015. “Effect of Allyl Isothiocyanate on Developmental Toxicity in Exposed xenopus laevis Embryos.” Toxicology Reports 2: 222–227.
  • Zhang, Z., K. Wen, C. Zhang, F. Laroche, Z. Wang, Q. Zhou, Z. Liu, J. P. Abrahams, and X. Zhou. 2020. “Extracellular Nanovesicle Enhanced Gene Transfection Using Polyethyleneimine in HEK293T Cells and Zebrafish Embryos.” Frontier Bioengineering and Biotechnology 8: 448.