243
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Multi-walled carbon nanotubes induce arachidonate 5-lipoxygenase expression and enhance the polarization and function of M1 macrophages in vitro

, , , &
Pages 249-269 | Received 03 Nov 2022, Accepted 13 Apr 2023, Published online: 28 Apr 2023

References

  • Abrial, C., S. Grassin-Delyle, H. Salvator, M. Brollo, E. Naline, and P. Devillier. 2015. “15-Lipoxygenases Regulate the Production of Chemokines in Human Lung Macrophages.” British Journal of Pharmacology 172 (17): 4319–4330. doi:10.1111/bph.13210.
  • Afonso, P. V., M. Janka-Junttila, Y. J. Lee, C. P. Mccann, C. M. Oliver, K. A. Aamer, W. Losert, M. T. Cicerone, and C. A. Parent. 2012. “LTB4 is a Signal-Relay Molecule during Neutrophil Chemotaxis.” Developmental Cell 22 (5): 1079–1091. doi:10.1016/j.devcel.2012.02.003.
  • Bell, R. L., and R. R. Harris. 1999. “The Enzymology and Pharmacology of 5-Lipoxygenase and 5-Lipoxygenase Activating Protein.” Clinical Reviews in Allergy & Immunology 17 (1-2): 91–109. doi:10.1007/BF02737599.
  • Bonner, J. C. 2010. “Nanoparticles as a Potential Cause of Pleural and Interstitial Lung Disease.” Proceedings of the American Thoracic Society 7 (2): 138–141. doi:10.1513/pats.200907-061RM.
  • Castranova, V., and V. Vallyathan. 2000. “Silicosis and Coal Workers’ Pneumoconiosis.” Environmental Health Perspectives 108 (Suppl 4): 675–684. doi:10.1289/ehp.00108s4675.
  • Chauhan, B. F., M. M. Jeyaraman, A. Singh Mann, J. Lys, A. M. Abou-Setta, R. Zarychanski, and F. M. Ducharme. 2017. “Addition of anti-Leukotriene Agents to Inhaled Corticosteroids for Adults and Adolescents with Persistent Asthma.” The Cochrane Database of Systematic Reviews 3 (3): CD010347. doi:10.1002/14651858.CD010347.pub2.
  • Chiang, N., G. Fredman, F. Backhed, S. F. Oh, T. Vickery, B. A. Schmidt, and C. N. Serhan. 2012. “Infection Regulates Pro-Resolving Mediators That Lower Antibiotic Requirements.” Nature 484 (7395): 524–528. doi:10.1038/nature11042.
  • Czarnetzki, B. 1983. “Increased Monocyte Chemotaxis towards Leukotriene B4 and Platelet Activating Factor in Patients with Inflammatory Dermatoses.” Clinical and Experimental Immunology 54 (2): 486–492.
  • De Volder, M. F., S. H. Tawfick, R. H. Baughman, and A. J. Hart. 2013. “Carbon Nanotubes: present and Future Commercial Applications.” Science (New York, N.Y.) 339 (6119): 535–539. doi:10.1126/science.1222453.
  • Dixon, R. A., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. “Requirement of a 5-Lipoxygenase-Activating Protein for Leukotriene Synthesis.” Nature 343 (6255): 282–284. doi:10.1038/343282a0.
  • Donaldson, K., R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander. 2006. “Carbon Nanotubes: A Review of Their Properties in Relation to Pulmonary Toxicology and Workplace Safety.” Toxicological Sciences : An Official Journal of the Society of Toxicology 92 (1): 5–22. doi:10.1093/toxsci/kfj130.
  • Donaldson, K., F. A. Murphy, R. Duffin, and C. A. Poland. 2010. “Asbestos, Carbon Nanotubes and the Pleural Mesothelium: A Review of the Hypothesis regarding the Role of Long Fibre Retention in the Parietal Pleura, Inflammation and Mesothelioma.” Particle and Fibre Toxicology 7: 5. doi:10.1186/1743-8977-7-5.
  • Dong, J., and Q. Ma. 2015. “Advances in Mechanisms and Signaling Pathways of Carbon Nanotube Toxicity.” Nanotoxicology 9 (5): 658–676. doi:10.3109/17435390.2015.1009187.
  • Dong, J., and Q. Ma. 2016a. “In Vivo Activation of a T Helper 2-Driven Innate Immune Response in Lung Fibrosis Induced by Multi-Walled Carbon Nanotubes.” Archives of Toxicology 90 (9): 2231–2248. doi:10.1007/s00204-016-1711-1.
  • Dong, J., and Q. Ma. 2016b. “Myofibroblasts and Lung Fibrosis Induced by Carbon Nanotube Exposure.” Particle and Fibre Toxicology 13 (1): 60. doi:10.1186/s12989-016-0172-2.
  • Dong, J., and Q. Ma. 2017. “Osteopontin Enhances Multi-Walled Carbon Nanotube-Triggered Lung Fibrosis by Promoting TGF-beta1 Activation and Myofibroblast Differentiation.” Particle and Fibre Toxicology 14 (1): 18. doi:10.1186/s12989-017-0198-0.
  • Dong, J., and Q. Ma. 2018a. “Macrophage Polarization and Activation at the Interface of Multi-Walled Carbon Nanotube-Induced Pulmonary Inflammation and Fibrosis.” Nanotoxicology 12 (2): 153–168. doi:10.1080/17435390.2018.1425501.
  • Dong, J., and Q. Ma. 2018b. “Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.” Frontiers in Immunology 9: 1120. doi:10.3389/fimmu.2018.01120.
  • Dong, J., and Q. Ma. 2019a. “In Vivo Activation and Pro-Fibrotic Function of NF-kappaB in Fibroblastic Cells during Pulmonary Inflammation and Fibrosis Induced by Carbon Nanotubes.” Frontiers in Pharmacology 10: 1140. doi:10.3389/fphar.2019.01140.
  • Dong, J., and Q. Ma. 2019b. “Integration of Inflammation, Fibrosis, and Cancer Induced by Carbon Nanotubes.” Nanotoxicology 13 (9): 1244–1274. doi:10.1080/17435390.2019.1651920.
  • Dong, J., D. W. Porter, L. A. Batteli, M. G. Wolfarth, D. L. Richardson, and Q. Ma. 2015. “Pathologic and Molecular Profiling of Rapid-Onset Fibrosis and Inflammation Induced by Multi-Walled Carbon Nanotubes.” Archives of Toxicology 89 (4): 621–633. doi:10.1007/s00204-014-1428-y.
  • Haeggstrom, J. Z. 2018. “Leukotriene Biosynthetic Enzymes as Therapeutic Targets.” Journal of Clinical Investigation 128 (7): 2680–2690. doi:10.1172/JCI97945.
  • He, R., Y. Chen, and Q. Cai. 2020. “The Role of the LTB4-BLT1 Axis in Health and Disease.” Pharmacological Research 158: 104857. doi:10.1016/j.phrs.2020.104857.
  • He, X., S. H. Young, D. Schwegler-Berry, W. P. Chisholm, J. E. Fernback, and Q. Ma. 2011. “Multiwalled Carbon Nanotubes Induce a Fibrogenic Response by Stimulating Reactive Oxygen Species Production, Activating NF-kappaB Signaling, and Promoting Fibroblast-to-Myofibroblast Transformation.” Chemical Research in Toxicology 24 (12): 2237–2248. doi:10.1021/tx200351d.
  • Hindman, B., and Q. Ma. 2018. “Carbon Nanotubes and Crystalline Silica Induce Matrix Remodeling and Contraction by Stimulating Myofibroblast Transformation in a Three-Dimensional Culture of Human Pulmonary Fibroblasts: role of Dimension and Rigidity.” Archives of Toxicology 92 (11): 3291–3305. doi:10.1007/s00204-018-2306-9.
  • Hindman, B., and Q. Ma. 2019. “Carbon Nanotubes and Crystalline Silica Stimulate Robust ROS Production, Inflammasome Activation, and IL-1beta Secretion in Macrophages to Induce Myofibroblast Transformation.” Archives of Toxicology 93 (4): 887–907. doi:10.1007/s00204-019-02411-y.
  • Hu, Q., C. J. Lyon, J. K. Fletcher, W. Tang, M. Wan, and T. Y. Hu. 2021. “Extracellular Vesicle Activities Regulating Macrophage- and Tissue-Mediated Injury and Repair Responses.” Acta Pharmaceutica Sinica. B 11 (6): 1493–1512. doi:10.1016/j.apsb.2020.12.014.
  • Hussell, T., and T. J. Bell. 2014. “Alveolar Macrophages: plasticity in a Tissue-Specific Context.” Nature Reviews. Immunology 14 (2): 81–93. doi:10.1038/nri3600.
  • Jackson, W. T., L. L. Froelich, R. J. Boyd, J. P. Schrementi, D. L. Saussy, Jr., R. M. Schultz, J. S. Sawyer, Jr., et al. 1999. “Pharmacologic Actions of the Second-Generation Leukotriene B4 Receptor Antagonist LY293111: In Vitro Studies.” The Journal of Pharmacology and Experimental Therapeutics 288 (1): 286–294.
  • Kabir, E. R., and N. Morshed. 2015. “Different Approaches in the Treatment of Obstructive Pulmonary Diseases.” European Journal of Pharmacology 764: 306–317. doi:10.1016/j.ejphar.2015.07.030.
  • Kishore, A., and M. Petrek. 2021. “Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis.” Frontiers in Immunology 12: 678457. doi:10.3389/fimmu.2021.678457.
  • Kumar, S., R. Rani, N. Dilbaghi, K. Tankeshwar, and K. H. Kim. 2017. “Carbon Nanotubes: A Novel Material for Multifaceted Applications in Human Healthcare.” Chemical Society Reviews 46 (1): 158–196. doi:10.1039/c6cs00517a.
  • Lam, C. W., J. T. James, R. Mccluskey, and R. L. Hunter. 2004. “Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation.” Toxicological Sciences : An Official Journal of the Society of Toxicology 77 (1): 126–134. doi:10.1093/toxsci/kfg243.
  • Lim, C. S., D. W. Porter, M. S. Orandle, B. J. Green, M. A. Barnes, T. L. Croston, M. G. Wolfarth, et al. 2020. “Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization.” Frontiers in Immunology 11: 1186. doi:10.3389/fimmu.2020.01186.
  • Ma, Q. 2020. “Polarization of Immune Cells in the Pathologic Response to Inhaled Particulates.” Frontiers in Immunology 11: 1060. doi:10.3389/fimmu.2020.01060.
  • Ma-Hock, Lan., Volker Strauss, Silke Treumann, Karin Küttler, Wendel Wohlleben, Thomas Hofmann, Sibylle Gröters, Karin Wiench, Bennard van Ravenzwaay, and Robert Landsiedel. 2013. “Comparative Inhalation Toxicity of Multi-Wall Carbon Nanotubes, Graphene, Graphite Nanoplatelets and Low Surface Carbon Black.” Particle and Fibre Toxicology 10: 23. doi:10.1186/1743-8977-10-23.
  • Mashima, R., and T. Okuyama. 2015. “The Role of Lipoxygenases in Pathophysiology; New Insights and Future Perspectives.” Redox Biology 6: 297–310. doi:10.1016/j.redox.2015.08.006.
  • Mcmillan, R. M., and S. J. Foster. 1988. “Leukotriene B4 and Inflammatory Disease.” Agents and Actions 24 (1-2): 114–119. doi:10.1007/BF01968088.
  • Meng, J., X. Li, C. Wang, H. Guo, J. Liu, and H. Xu. 2015. “Carbon Nanotubes Activate Macrophages into a M1/M2 Mixed Status: recruiting Naive Macrophages and Supporting Angiogenesis.” ACS Applied Materials & Interfaces 7 (5): 3180–3188. doi:10.1021/am507649n.
  • Millius, A., and O. D. Weiner. 2010. “Manipulation of Neutrophil-like HL-60 Cells for the Study of Directed Cell Migration.” Methods in Molecular Biology. 591: 147–158.
  • Muller, J., F. Huaux, N. Moreau, P. Misson, J. F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, and D. Lison. 2005. “Respiratory Toxicity of Multi-Wall Carbon Nanotubes.” Toxicology and Applied Pharmacology 207 (3): 221–231. doi:10.1016/j.taap.2005.01.008.
  • Murphy, R. C., and M. A. Gijon. 2007. “Biosynthesis and Metabolism of Leukotrienes.” The Biochemical Journal 405 (3): 379–395. doi:10.1042/BJ20070289.
  • Murray, P. J., J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy, S. Goerdt, S. Gordon, et al. 2014. “Macrophage Activation and Polarization: nomenclature and Experimental Guidelines.” Immunity 41 (1): 14–20. doi:10.1016/j.immuni.2014.06.008.
  • Nishiokada, A., M. Miyoshi, M. Fujiwara, M. Aoyama-Ishikawa, N. Maeshige, M. Takahashi, Y. Hamada, et al. 2015. “Changes of Hepatic Lipid Mediators Associated with Intake of High-Fat Diet for 12 Weeks in Endotoxemic Rats Using LC-ESI-MS/MS.” Clinical Nutrition (Edinburgh, Scotland) 34 (4): 685–693. doi:10.1016/j.clnu.2014.07.013.
  • Poirier, S. J., L. H. Boudreau, N. Flamand, and M. E. Surette. 2020. “LPS Induces ALOX5 Promoter Activation and 5-Lipoxygenase Expression in Human Monocytic Cells.” Prostaglandins, Leukotrienes, and Essential Fatty Acids 154: 102078. doi:10.1016/j.plefa.2020.102078.
  • Pollard, J. W. 2009. “Trophic Macrophages in Development and Disease.” Nature Reviews. Immunology 9 (4): 259–270. doi:10.1038/nri2528.
  • Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, et al. 2010. “Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes.” Toxicology 269 (2-3): 136–147. doi:10.1016/j.tox.2009.10.017.
  • Radmark, O., O. Werz, D. Steinhilber, and B. Samuelsson. 2015. “5-Lipoxygenase, a Key Enzyme for Leukotriene Biosynthesis in Health and Disease.” Biochimica et Biophysica Acta 1851 (4): 331–339. doi:10.1016/j.bbalip.2014.08.012.
  • Ramaiah, S. K., and H. Jaeschke. 2007. “Role of Neutrophils in the Pathogenesis of Acute Inflammatory Liver Injury.” Toxicologic Pathology 35 (6): 757–766. doi:10.1080/01926230701584163.
  • Rouzer, C. A., T. Matsumoto, and B. Samuelsson. 1986. “Single Protein from Human Leukocytes Possesses 5-Lipoxygenase and Leukotriene A4 Synthase Activities.” Proceedings of the National Academy of Sciences of the United States of America 83 (4): 857–861. doi:10.1073/pnas.83.4.857.
  • Sanchez, V. C., P. Weston, A. Yan, R. H. Hurt, and A. B. Kane. 2011. “A 3-Dimensional in Vitro Model of Epithelioid Granulomas Induced by High Aspect Ratio Nanomaterials.” Particle and Fibre Toxicology 8: 17. doi:10.1186/1743-8977-8-17.
  • Serhan, C. N. 2014. “Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology.” Nature 510 (7503): 92–101. doi:10.1038/nature13479.
  • Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S. A. Esmaeili, F. Mardani, B. Seifi, A. Mohammadi, J. T. Afshari, and A. Sahebkar. 2018. “Macrophage Plasticity, Polarization, and Function in Health and Disease.” Journal of Cellular Physiology 233 (9): 6425–6440. doi:10.1002/jcp.26429.
  • Sheppe, A. E. F, and M. J. Edelmann. 2021. “Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections.” Infection and Immunity 89 (8): e0009521. doi:10.1128/IAI.00095-21.
  • Shvedova, A. A., E. R. Kisin, R. Mercer, A. R. Murray, V. J. Johnson, A. I. Potapovich, Y. Y. Tyurina, et al. 2005. “Unusual Inflammatory and Fibrogenic Pulmonary Responses to Single-Walled Carbon Nanotubes in Mice.” American Journal of Physiology. Lung Cellular and Molecular Physiology 289 (5): L698–708. doi:10.1152/ajplung.00084.2005.
  • Tang, J., L. Lei, J. Pan, C. Zhao, and J. Wen. 2018. “Higher Levels of Serum Interleukin-35 Are Associated with the Severity of Pulmonary Fibrosis and Th2 Responses in Patients with Systemic Sclerosis.” Rheumatology International 38 (8): 1511–1519. doi:10.1007/s00296-018-4071-8.
  • Wang, X., P. Katwa, R. Podila, P. Chen, P. C. Ke, A. M. Rao, D. M. Walters, C. J. Wingard, and J. M. Brown. 2011. “Multi-Walled Carbon Nanotube Instillation Impairs Pulmonary Function in C57BL/6 Mice.” Particle and Fibre Toxicology 8: 24. doi:10.1186/1743-8977-8-24.
  • Wasserman, S. I. 1980. “The Lung Mast Cell: its Physiology and Potential Relevance to Defense of the Lung.” Environmental Health Perspectives 35: 153–164. doi:10.1289/ehp.8035153.
  • Werz, O., J. Gerstmeier, S. Libreros, X. De La Rosa, M. Werner, P. C. Norris, N. Chiang, and C. N. Serhan. 2018. “Human Macrophages Differentially Produce Specific Resolvin or Leukotriene Signals That Depend on Bacterial Pathogenicity.” Nature Communications 9 (1): 59. doi:10.1038/s41467-017-02538-5.
  • Wynn, T. A. 2015. “Type 2 Cytokines: mechanisms and Therapeutic Strategies.” Nature Reviews. Immunology 15 (5): 271–282. doi:10.1038/nri3831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.