83
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011–2023): a systematic review

, , &
Received 16 Jan 2024, Accepted 02 Apr 2024, Published online: 22 Apr 2024

References

  • Abdelnasir, S., A. Anwar, M. Kawish, A. Anwar, M. R. Shah, R. Siddiqui, and N. A. Khan. 2020. “Metronidazole Conjugated Magnetic Nanoparticles Loaded with Amphotericin B Exhibited Potent Effects against Pathogenic Acanthamoeba castellanii Belonging to the T4 Genotype.” AMB Express 10 (1): 127. https://doi.org/10.1186/s13568-020-01061-z.[Mismatch]
  • Abu Ammar, A., A. Nasereddin, S. Ereqat, M. Dan-Goor, C. L. Jaffe, E. Zussman, and Z. Abdeen. 2019. “Amphotericin B-Loaded Nanoparticles for Local Treatment of Cutaneous Leishmaniasis.” Drug Delivery and Translational Research 9 (1): 76–84. https://doi.org/10.1007/s13346-018-00603-0.
  • Ahmed, T. A., M. M. Alzahrani, A. Sirwi, and N. A. Alhakamy. 2021. “The Antifungal and Ocular Permeation of Ketoconazole from Ophthalmic Formulations Containing Trans-Ethosomes Nanoparticles.” Pharmaceutics 13 (2): 151. https://doi.org/10.3390/pharmaceutics13020151.
  • Akbar, N., Z. Aslam, R. Siddiqui, M. R. Shah, and N. A. Khan. 2021. “Zinc Oxide Nanoparticles Conjugated with Clinically-Approved Medicines as Potential Antibacterial Molecules.” AMB Express 11 (1): 104. https://doi.org/10.1186/s13568-021-01261-1.
  • Alshahrani, S. M., E.-S. Khafagy, Y. Riadi, A. Al Saqr, M. M. Alfadhel, and W. A. H. Hegazy. 2022. “Amphotericin B-PEG Conjugates of ZnO Nanoparticles: Enhancement Antifungal Activity with Minimal Toxicity.” Pharmaceutics 14 (8): 1646. https://www.mdpi.com/1999-4923/14/8/1646. https://doi.org/10.3390/pharmaceutics14081646.
  • Amphotericin Versus Posaconazole for Pulmonary Mucormycosis. 2023. (November 27, https://classic.clinicaltrials.gov/ct2/show/NCT05468372?term=amphotericin&recrs=abdf&draw=2&rank=1
  • An, H., X. Deng, F. Wang, P. Xu, and N. Wang. 2023. “Dendrimers as Nanocarriers for the Delivery of Drugs Obtained from Natural Products.” Polymers 15 (10): 2292. https://doi.org/10.3390/polym15102292.
  • Anwar, A., R. Siddiqui, M. A. Hussain, D. Ahmed, M. R. Shah, and N. A. Khan. 2018. “Silver Nanoparticle Conjugation Affects Antiacanthamoebic Activities of Amphotericin B, Nystatin, and Fluconazole.” Parasitology Research 117 (1): 265–271. https://doi.org/10.1007/s00436-017-5701-x.
  • Ashraf, M. D., J. A. Farooqi, and K. Javed. 2018. “Evaluation of Macrophage Injury and Activation by Amphotericin B-Loaded Polymeric Nanoparticles.” International Journal of Polymeric Materials and Polymeric Biomaterials 67 (5): 297–306. https://doi.org/10.1080/00914037.2017.1323216.
  • Bahraminejad, S., A. Pardakhty, I. Sharifi, A. Keyhani, E. Salarkia, and M. Ranjbar. 2023. “Synthesis and Physicochemical Characterization of Zn-Al Layered Double Hydroxides (LDHs) as a Delivery System for Amphotericin B: In Vitro and in Silico Antileishmanial Study.” Heliyon 9 (4): e15308. https://doi.org/10.1016/j.heliyon.2023.e15308.
  • Banshoya, K., Y. Kaneo, T. Tanaka, S. Yamamoto, and H. Maeda. 2020. “Development of an Amphotericin B Micellar Formulation Using Cholesterol-Conjugated Styrene-Maleic Acid Copolymer for Enhancement of Blood Circulation and Antifungal Selectivity.” International Journal of Pharmaceutics 589: 119813. https://doi.org/10.1016/j.ijpharm.2020.119813.
  • Benincasa, M., S. Pacor, W. Wu, M. Prato, A. Bianco, and R. Gennaro. 2011. “Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes.” ACS Nano 5 (1): 199–208. https://doi.org/10.1021/nn1023522.
  • Bhattacharya, P., and S. Neogi. 2017. “Gentamicin Coated Iron Oxide Nanoparticles as Novel Antibacterial Agents.” Materials Research Express 4 (9): 095005. https://doi.org/10.1088/2053-1591/aa8652.
  • Boshrouyeh, R., S. Amari, M. Boshrouyeh Ghandashtani, S. E. Alavi, and H. Ebrahimi Shahmabadi. 2023. “A Topical Gel Nanoformulation of Amphotericin B (AmB) for the Treatment of Cutaneous Leishmaniasis (CL).” Journal of Sol-Gel Science and Technology 105 (3): 768–780. https://doi.org/10.1007/s10971-023-06041-w.
  • Brajtburg, J., and J. Bolard. 1996. “Carrier Effects on Biological Activity of Amphotericin B.” Clinical Microbiology Reviews 9 (4): 512–531. https://doi.org/10.1128/cmr.9.4.512.
  • Butani, D., C. Yewale, and A. Misra. 2014. “Amphotericin B Topical Microemulsion: formulation, Characterization and Evaluation.” Colloids and Surfaces B Biointerfaces 139: 17–24. https://doi.org/10.1016/j.colsurfb.2014.01.014.
  • Chintalacharuvu, K. R., Z. A. Matolek, B. Pacheco, E. M. Carriera, and D. O. Beenhouwer. 2021. “Complexing Amphotericin B with Gold Nanoparticles Improves Fungal Clearance from the Brains of Mice Infected with Cryptococcal Neoformans.” Medical Mycology 59 (11): 1085–1091. https://doi.org/10.1093/mmy/myab042.
  • Chronic Pulmonary Aspergillosis and Ambisome Aerosol With Itraconazole. 2023. (December 6, https://classic.clinicaltrials.gov/ct2/show/NCT03656081?term=amphotericin&recrs=abdf&draw=2&rank=7
  • Clemons, K. V., J. A. Schwartz, and D. A. Stevens. 2012. “Experimental Central Nervous System Aspergillosis Therapy: efficacy, Drug Levels and Localization, Immunohistopathology, and Toxicity.” Antimicrobial Agents and Chemotherapy 56 (8): 4439–4449. https://doi.org/10.1128/aac.06015-11.
  • Cui, L., X. Ren, M. Sun, H. Liu, and L. Xia. 2021. “Carbon Dots: Synthesis, Properties and Applications.” Nanomaterials (Basel, Switzerland) 11 (12): 3419. https://doi.org/10.3390/nano11123419.
  • Dash, M., F. Chiellini, R. M. Ottenbrite, and E. Chiellini. 2011. “Chitosan-A Versatile Semi-Synthetic Polymer in Biomedical Applications.” Progress in Polymer Science 36 (8): 981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001.
  • Demirci, M., M. Çağlar, B. Çakır, and I. Gülseren. 2017. “Chapter -3 Encapsulation by Nanoliposomes.” In S. M. Jafari (Ed.), Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 74–113). Amsterdam, The Netherlands: Academic Press. https://doi.org/10.1016/B978-0-12-809436-5.00003-3.
  • Demirci, T., M. E. Hasköylü, M. S. Eroğlu, J. Hemberger, and E. Toksoy Öner. 2020. “Levan-Based Hydrogels for Controlled Release of Amphotericin B for Dermal Local Antifungal Therapy of Candidiasis.” European Journal of Pharmaceutical Sciences 145: 105255. https://doi.org/10.1016/j.ejps.2020.105255.
  • Dreiss, C. A. 2020. “Hydrogel Design Strategies for Drug Delivery.” Current Opinion in Colloid & Interface Science 48: 1–17. https://doi.org/10.1016/j.cocis.2020.02.001.
  • Efficacy and Safety of High-dose Liposomal Amphotericin B for Disseminated Histoplasmosis in AIDS. 2024. (February 22, https://classic.clinicaltrials.gov/ct2/show/NCT05814432?term=amphotericin&recrs=abdf&draw=2&rank=3
  • Elhabal, S. F., S. A. Ghaffar, R. Hager, N. A. Elzohairy, M. M. Khalifa, P. M. Mohie, R. A. Gad, et al. 2023. “Development of Thermosensitive Hydrogel of Amphotericin-B and Lactoferrin Combination-Loaded PLGA-PEG-PEI Nanoparticles for Potential Eradication of Ocular Fungal Infections: In-Vitro, Ex-Vivo and in-Vivo Studies.” International Journal of Pharmaceutics 5: 100174. https://doi.org/10.1016/j.ijpx.2023.100174.
  • Espada, R., S. Valdespina, C. Alfonso, G. Rivas, M. P. Ballesteros, and J. J. Torrado. 2008. “Effect of Aggregation State on the Toxicity of Different Amphotericin B Preparations.” International Journal of Pharmaceutics 361 (1-2): 64–69. https://doi.org/10.1016/j.ijpharm.2008.05.013.
  • Fedel, M. 2020. “Hemocompatibility of Carbon Nanostructures.” Journal of Carbon Research 6 (1): 12. https://doi.org/10.3390/c6010012.
  • Fernández-García, R., E. Pablo, P. Ballesteros, and D. Serrano. 2017. “Unmet Clinical Needs in the Treatment of Systemic Fungal Infections: The Role of Amphotericin B and Drug Targeting.” International Journal of Pharmaceutics 525 (1): 139–148. https://doi.org/10.1016/j.ijpharm.2017.04.013.
  • Ferreira, L., and A. Zumbuehl. 2009. “Non-Leaching Surfaces Capable of Killing Microorganisms on Contact.” Journal of Materials Chemistry 19 (42):7796–7806. https://doi.org/10.1039/b905668h.
  • Figuerola, A., R. Di Corato, L. Manna, and T. Pellegrino. 2010. “From Iron Oxide Nanoparticles towards Advanced Iron-Based Inorganic Materials Designed for Biomedical Applications.” Pharmacological Research 62 (2): 126–143. https://doi.org/10.1016/j.phrs.2009.12.012.
  • Gayen, B., S. Palchoudhury, and J. Chowdhury. 2019. “Carbon Dots: A Mystic Star in the World of Nanoscience.” Journal of Nanomaterials 2019: 1–19. https://doi.org/10.1155/2019/3451307.
  • Gedda, M. R., P. Madhukar, A. K. Vishwakarma, V. Verma, A. K. Kushwaha, G. Yadagiri, S. L. Mudavath, O. P. Singh, O. N. Srivastava, and S. Sundar. 2020. “Evaluation of Safety and Antileishmanial Efficacy of Amine Functionalized Carbon-Based Composite Nanoparticle Appended with Amphotericin B: An in Vitro and Preclinical Study [Original Research.” Frontiers in Chemistry 8: 510. https://doi.org/10.3389/fchem.2020.00510.
  • Grudzinski, W., J. Sagan, R. Welc, R. Luchowski, and W. I. Gruszecki. 2016. “Molecular Organization, Localization and Orientation of Antifungal Antibiotic Amphotericin B in a Single Lipid Bilayer.” Scientific Reports 6 (1): 32780. https://doi.org/10.1038/srep32780.
  • Hines, D. J., and D. L. Kaplan. 2013. “Poly(lactic-co-glycolic) Acid-Controlled-Release Systems: Experimental and Modeling Insights.” Crit Rev Ther Drug Carrier Syst 30 (3): 257–276. https://doi.org/10.1615/critrevtherdrugcarriersyst.2013006475.
  • Hussain, A., A. Samad, I. Nazish, and F. J. Ahmed. 2014. “Nanocarrier-Based Topical Drug Delivery for an Antifungal Drug.” Drug Development and Industrial Pharmacy 40 (4): 527–541. https://doi.org/10.3109/03639045.2013.771647.
  • Iqbal, K., S. A. O. Abdalla, A. Anwar, K. M. Iqbal, M. R. Shah, A. Anwar, R. Siddiqui, and N. A. Khan. 2020. “Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii.” Antibiotics 9 (5): 276. https://www.mdpi.com/2079-6382/9/5/276. https://doi.org/10.3390/antibiotics9050276.
  • Jafari, M., S. S. Abolmaali, A. M. Tamaddon, K. Zomorodian, and B. Shahriarirad. 2021. “Nanotechnology Approaches for Delivery and Targeting of Amphotericin B in Fungal and Parasitic Diseases.” Nanomedicine (London, England) 16 (10): 857–877. https://doi.org/10.2217/nnm-2020-0482.
  • Jahangirian, H., K. Kalantari, Z. Izadiyan, R. Rafiee-Moghaddam, K. Shameli, and T. J. Webster. 2019. “A Review of Small Molecules and Drug Delivery Applications Using Gold and Iron Nanoparticles.” International Journal of Nanomedicine 14: 1633–1657. https://doi.org/10.2147/ijn.S184723.
  • Jain, A., N. Mehra, K. Mehra, N. Lodhi, V. Dubey, D. Mishra, K. Mishra, et al. 2007. “Carbon Nanotubes and Their Toxicity.” Nanotoxicology 1 (3): 167–197. https://doi.org/10.1080/17435390701639688.
  • Jain, K., P. Kesharwani, U. Gupta, and N. K. Jain. 2012. “A Review of Glycosylated Carriers for Drug Delivery.” Biomaterials 33 (16): 4166–4186. https://doi.org/10.1016/j.biomaterials.2012.02.033.
  • Jain, K., A. K. Verma, P. R. Mishra, and N. K. Jain. 2015. “Surface-Engineered Dendrimeric Nanoconjugates for Macrophage-Targeted Delivery of Amphotericin B: formulation Development and in Vitro and in Vivo Evaluation.” Antimicrobial Agents and Chemotherapy 59 (5): 2479–2487. https://doi.org/10.1128/aac.04213-14.
  • Jain, V. K., K. Jain, and H. Popli. 2024. “Conjugates of Amphotericin B to Resolve Challenges Associated with Its Delivery.” Expert Opinion on Drug Delivery 21 (2): 187–210. https://doi.org/10.1080/17425247.2024.2308073.
  • Jamal, F., I. Altaf, G. Ahmed, S. Asad, H. Ahmad, Q. Zia, A. Azhar, et al. 2023. “Amphotericin B Nano-Assemblies Circumvent Intrinsic Toxicity and Ensure Superior Protection in Experimental Visceral Leishmaniasis with Feeble Toxic Manifestation.” Vaccines 11 (1): 100. https://www.mdpi.com/2076-393X/11/1/100. https://doi.org/10.3390/vaccines11010100.
  • Jena, P., S. Mohanty, R. Mallick, B. Jacob, and A. Sonawane. 2012. “Toxicity and Antibacterial Assessment of Chitosan-Coated Silver Nanoparticles on Human Pathogens and Macrophage Cells.” International Journal of Nanomedicine 7: 1805–1818. https://doi.org/10.2147/ijn.S28077.
  • Ji, X., C. Shi, D. Guo, X. Yang, L. Suo, and J. Luo. 2023. “Engineering Telodendrimer Nanocarriers for Monomeric Amphotericin B Delivery.” Molecular Pharmaceutics 20 (4): 2138–2149. https://doi.org/10.1021/acs.molpharmaceut.2c01087.
  • Johnson, R. H., and H. E. Einstein. 2007. “Amphotericin B and Coccidioidomycosis.” Annals of the New York Academy of Sciences 1111 (1): 434–441. https://doi.org/10.1196/annals.1406.019.
  • Jones, N., B. Ray, K. T. Ranjit, and A. C. Manna. 2008. “Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms.” FEMS Microbiology Letters 279 (1): 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x.
  • Kalishwaralal, K., S. BarathManiKanth, S. R. Pandian, V. Deepak, and S. Gurunathan. 2010. “Silver Nanoparticles Impede the Biofilm Formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.” Colloids and Surfaces B Biointerfaces 79 (2): 340–344. https://doi.org/10.1016/j.colsurfb.2010.04.014.
  • Kong, E. F., S. Kucharíková, P. Van Dijck, B. M. Peters, M. E. Shirtliff, and M. A. Jabra-Rizk. 2015. “Clinical Implications of Oral Candidiasis: host Tissue Damage and Disseminated Bacterial Disease.” Infection and Immunity 83 (2): 604–613. https://doi.org/10.1128/iai.02843-14.
  • Kothandaraman, G. P., V. Ravichandran, C. Bories, P. M. Loiseau, and A. Jayakrishnan. 2017. “Anti-Fungal and anti-Leishmanial Activities of Pectin-Amphotericin B Conjugates.” Journal of Drug Delivery Science and Technology 39: 1–7. https://doi.org/10.1016/j.jddst.2017.02.010.
  • Krishnan, R. A., T. Pant, S. Sankaranarayan, J. Stenberg, R. Jain, and P. Dandekar. 2018. “Protective Nature of Low Molecular Weight Chitosan in a Chitosan–Amphotericin B Nanocomplex – a Physicochemical Study.” Materials Science & Engineering C Materials for Biological Applications 93: 472–482. https://doi.org/10.1016/j.msec.2018.08.016.
  • Kumar, P., P. Shivam, S. Mandal, P. Prasanna, S. Kumar, S. R. Prasad, A. Kumar, et al. 2019. “Synthesis, Characterization, and Mechanistic Studies of a Gold Nanoparticle–Amphotericin B Covalent Conjugate with Enhanced Antileishmanial Efficacy and Reduced Cytotoxicity.” International Journal of Nanomedicine 14: 6073–6101. https://doi.org/10.2147/IJN.S196421.
  • Kumar, R., G. C. Sahoo, K. Pandey, V. N. R. Das, and P. Das. 2015. “Study the Effects of PLGA-PEG Encapsulated Amphotericin B Nanoparticle Drug Delivery System against Leishmania donovani.” Drug Delivery 22 (3): 383–388. https://doi.org/10.3109/10717544.2014.891271.
  • Kumari, A., S. K. Yadav, and S. C. Yadav. 2010. “Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems.” Colloids and Surfaces. B, Biointerfaces 75 (1): 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.
  • Landriscina, A., J. Rosen, and A. J. Friedman. 2015. “Biodegradable Chitosan Nanoparticles in Drug Delivery for Infectious Disease.” Nanomedicine (London, England) 10 (10): 1609–1619. https://doi.org/10.2217/nnm.15.7.
  • Laniado-Laborín, R., and M. N. Cabrales-Vargas. 2009. “Amphotericin B: side Effects and Toxicity.” Revista Iberoamericana de Micologia 26 (4): 223–227. https://doi.org/10.1016/j.riam.2009.06.003.
  • Lanza, J. S., S. Pomel, P. M. Loiseau, and F. Frézard. 2019. “Recent Advances in Amphotericin B Delivery Strategies for the Treatment of Leishmaniases.” Expert Opinion on Drug Delivery 16 (10): 1063–1079. https://doi.org/10.1080/17425247.2019.1659243.
  • Leonhard, V., R. V. Alasino, A. Munoz, and D. M. Beltramo. 2018. “Silver Nanoparticles with High Loading Capacity of Amphotericin B: Characterization, Bactericidal and Antifungal Effects.” Current Drug Delivery 15 (6): 850–859. https://doi.org/10.2174/1567201814666170918162337.
  • Leonhard, V., L. R. Comini, R. V. Alasino, M. J. Cometto, K. L. Bierbrauer, and D. M. Beltramo. 2023. “Self-Assembled Teicoplanin Micelles as Amphotericin B Nanocarrier.” Journal of Pharmaceutical Sciences 112 (4): 1081–1088. https://doi.org/10.1016/j.xphs.2022.12.007.
  • Li, X., R. Huang, F.-K. Tang, W.-C. Li, S. S. W. Wong, K. C.-F. Leung, and L. Jin. 2019. “Red-Emissive Guanylated Polyene-Functionalized Carbon Dots Arm Oral Epithelia against Invasive Fungal Infections.” ACS Applied Materials & Interfaces 11 (50): 46591–46603. https://doi.org/10.1021/acsami.9b18003.
  • Li, X., Y. Peng, J. Ren, and X. Qu. 2006. “Carboxyl-Modified Single-Walled Carbon Nanotubes Selectively Induce Human Telomeric i-Motif Formation.” Proceedings of the National Academy of Sciences of the United States of America 103 (52): 19658–19663. https://doi.org/10.1073/pnas.0607245103.
  • Ling, D., and T. Hyeon. 2013. “Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications.” Small (Weinheim an Der Bergstrasse, Germany) 9 (9-10): 1450–1466. https://doi.org/10.1002/smll.201202111.
  • Ling Tan, J. S., C. J. Roberts, and N. Billa. 2019. “Mucoadhesive Chitosan-Coated Nanostructured Lipid Carriers for Oral Delivery of Amphotericin B.” Pharmaceutical Development and Technology 24 (4): 504–512. https://doi.org/10.1080/10837450.2018.1515225.
  • Lino, M. M., C. S. O. Paulo, A. C. Vale, M. F. Vaz, and L. S. Ferreira. 2013. “Antifungal Activity of Dental Resins Containing Amphotericin B-Conjugated Nanoparticles.” Dental Materials: official Publication of the Academy of Dental Materials 29 (10): e252–e262. https://doi.org/10.1016/j.dental.2013.07.023.
  • Ludwig, D. B., L. E. A. de Camargo, N. M. Khalil, M. E. Auler, and R. M. Mainardes. 2018. “Antifungal Activity of Chitosan-Coated Poly (Lactic-co-Glycolic) Acid Nanoparticles Containing Amphotericin B.” Mycopathologia 183 (4): 659–668. https://doi.org/10.1007/s11046-018-0253-x.
  • Makadia, H. K., and S. J. Siegel. 2011. “Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier.” Polymers 3 (3): 1377–1397. https://doi.org/10.3390/polym3031377.
  • Mehrizi, T. Z. 2021a. “Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study.” Nano 16 (08): 2130007. https://doi.org/10.1142/S1793292021300073.
  • Mehrizi, T. Z. 2021b. “Impact of Metallic, Quantum Dots and Carbon-Based Nanoparticles on Quality and Storage of Albumin Products for Clinical Use.” Nano 16 (14): 2130013. https://doi.org/10.1142/S1793292021300139.
  • Mehrizi, T. Z. 2022. “An Overview of the Latest Applications of Platelet-Derived Microparticles and Nanoparticles in Medical Technology 2010-2020.” Current Molecular Medicine 22 (6): 524–539. https://doi.org/10.2174/1566524021666210928152015.
  • Mehrizi, T. Z., and M. S. Ardestani. 2023a. “The Introduction of Dendrimers as a New Approach to Improve the Performance and Quality of Various Blood Products (Platelets, Plasma and Erythrocytes): a 2010-2022 Review Study.” Current Nanoscience 19 (1): 103–122. https://doi.org/10.2174/1573413718666220728141511.
  • Mehrizi, T. Z., and M. S. Ardestani. 2023b. “Therapeutic Application of Nanoparticles in Hepatitis Diseases: A Narrative Review (2011-2021).” Current Pharmaceutical Biotechnology 24 (5): 611–632. https://doi.org/10.2174/1389201023666220727141624.
  • Mehrizi, T. Z., M. S. Ardestani, M. H. M. Hoseini, A. Khamesipour, N. Mosaffa, and A. Ramezani. 2018. “Novel Nano-Sized Chitosan Amphotericin B Formulation with Considerable Improvement against Leishmania major.” Nanomedicine (London, England) 13 (24): 3129–3147. https://doi.org/10.2217/nnm-2018-0063.
  • Mehrizi, T. Z., M. S. Ardestani, and S. A. Kafiabad. 2022. “A Review Study of the influences of Dendrimer Nanoparticles on Stored Platelet in Order to Treat Patients (2001-2020).” Current Nanoscience 18 (3): 304–318. https://doi.org/10.2174/1566524021666210708154736.
  • Mehrizi, T. Z., M. S. Ardestani, and S. A. Kafiabad. 2023. “A Review of the Use of Metallic Nanoparticles as a Novel Approach for Overcoming the Stability Challenges of Blood Products: A Narrative Review from 2011-2021.” Current Drug Delivery 20 (3): 261–280. https://doi.org/10.2174/1567201819666220513092020.
  • Mehrizi, T. Z., M. S. Ardestani, A. Khamesipour, M. H. M. Hoseini, N. Mosaffa, A. Anissian, and A. Ramezani. 2018. “Reduction Toxicity of Amphotericin B through Loading into a Novel Nanoformulation of Anionic Linear Globular Dendrimer for Improve Treatment of leishmania major.” Journal of Materials Science. Materials in Medicine 29 (8): 125. https://doi.org/10.1007/s10856-018-6122-9.
  • Mehrizi, T. Z., and K. M. Hosseini. 2021. “An Overview on the Investigation of Nanomaterials’ Effect on Plasma Components: immunoglobulins and Coagulation Factor VIII, 2010–2020 Review.” Nanoscale Advances 3 (13): 3730–3745.
  • Mehrizi, T. Z., S. A. Kafiabad, and P. Eshghi. 2021. “Effects and Treatment Applications of Polymeric Nanoparticles on Improving Platelets’ Storage Time: A Review of the Literature from 2010 to 2020.” Blood Research 56 (4): 215–228. https://doi.org/10.5045/br.2021.2021094.
  • Mehrizi, T. Z., M. Mirzaei, and M. S. Ardestani. 2024. “Pegylation, a Successful Strategy to Address the Storage and Instability Problems of Blood Products: Review 2011-2021.” Current Pharmaceutical Biotechnology 25 (3): 247–267. https://doi.org/10.2174/1389201024666230522091958.
  • Mehrizi, T. Z., S. M. Rezayat, M. S. Ardestani, H. E. Shahmabadi, and A. Ramezani. 2021. “A Review Study about the Effect of Chitosan Nanocarrier on Improving the Efficacy of Amphotericin B in the Treatment of Leishmania from 2010 to 2020.” Current Drug Delivery 18 (9): 1234–1243. https://doi.org/10.2174/1567201818666210316111941.
  • Mehta, V., S. Jha, H. Basu, R. Singhal, and S. Kailasa. 2015. “One-Step Hydrothermal Approach to Fabricate Carbon Dots from Apple Juice for Imaging of mycobacterium and Fungal Cells.” Sensors and Actuators B: Chemical 213: 434–443. https://doi.org/10.1016/j.snb.2015.02.104.
  • Messeder, M. M. d S., D. Miranda, S. O. Lamas de Souza, M. Dorneles, R. Giunchetti, and R. L. Oréfice. 2021. “Positively-Charged Electrosprayed Nanoparticles Based on Biodegradable Polymers Containing Amphotericin B for the Treatment of Leishmaniasis.” International Journal of Polymeric Materials and Polymeric Biomaterials 70 (16): 1189–1202. https://doi.org/10.1080/00914037.2020.1785457.
  • Monteiro, D. R., L. F. Gorup, S. Silva, M. Negri, E. R. de Camargo, R. Oliveira, D. B. Barbosa, and M. Henriques. 2011. “Silver Colloidal Nanoparticles: antifungal Effect against Adhered Cells and Biofilms of Candida albicans and Candida glabrata.” Biofouling 27 (7): 711–719. https://doi.org/10.1080/08927014.2011.599101.
  • Mosimaneotsile, B., A. Mathoma, B. Chengeta, S.Nyirenda, T. B. Agizew, Z. Tedla, O. I. Motsamai, P. H. Kilmarx, C. D. Wells, and T. Samandari. 2010. “Isoniazid Tuberculosis Preventive Therapy in HIV-Infected Adults Accessing Antiretroviral Therapy: A Botswana Experience, 2004-2006.” Journal of Acquired Immune Deficiency Syndromes (1999) 54 (1): 71–77. https://doi.org/10.1097/QAI.0b013e3181c3cbf0.
  • Mudavath, S. L., M. Rai, M. Talat, O. N. Srivastava, and S. Sundar. 2014. “Amine Modified Graphene Mediated Drug Delivery of Amphotericin B for the Treatment of Visceral Leishmaniasis.” International Journal of Infectious Diseases 21: 158. https://doi.org/10.1016/j.ijid.2014.03.753.
  • Mudavath, S. L., M. Talat, M. Rai, O. N. Srivastava, and S. Sundar. 2014. “Characterization and Evaluation of Amine-Modified Graphene Amphotericin B for the Treatment of Visceral Leishmaniasis: In Vivo and in Vitro Studies.” Drug Design, Development and Therapy 8: 1235–1247. https://doi.org/10.2147/DDDT.S63994.
  • Müller, R. H., C. Jacobs, and O. Kayser. 2001. “Nanosuspensions as Particulate Drug Formulations in Therapy. Rationale for Development and What we Can Expect for the Future.” Advanced Drug Delivery Reviews 47 (1): 3–19. https://doi.org/10.1016/s0169-409x(00)00118-6.
  • Najam-Ul-Haq, M., M. Rainer, T. Schwarzenauer, C. W. Huck, and G. K. Bonn. 2006. “Chemically Modified Carbon Nanotubes as Material Enhanced Laser Desorption Ionisation (MELDI) Material in Protein Profiling.” Analytica Chimica Acta 561 (1-2): 32–39. https://doi.org/10.1016/j.aca.2006.01.012.
  • Niemirowicz, K., B. Durnaś, G. Tokajuk, K. Głuszek, A. Z. Wilczewska, I. Misztalewska, J. Mystkowska, et al. 2016. “Magnetic Nanoparticles as a Drug Delivery System That Enhance Fungicidal Activity of Polyene Antibiotics.” Nanomedicine: nanotechnology, Biology, and Medicine 12 (8): 2395–2404. https://doi.org/10.1016/j.nano.2016.07.006.
  • Nimtrakul, P., P. Sermsappasuk, and W. Tiyaboonchai. 2020. “Strategies to Enhance Oral Delivery of Amphotericin B: A Comparison of Uncoated and Enteric-Coated Nanostructured Lipid Carriers.” Drug Delivery 27 (1): 1054–1062. https://doi.org/10.1080/10717544.2020.1785050.
  • Nimtrakul, P., W. Tiyaboonchai, and S. Lamlertthon. 2019. “Amphotericin B Loaded Nanostructured Lipid Carriers for Parenteral Delivery: Characterization, Antifungal and in Vitro Toxicity Assessment.” Current Drug Delivery 16 (7): 645–653. https://doi.org/10.2174/1567201816666190729145223.
  • Olorofim Aspergillus Infection Study (OASIS). 2023. (June 1, https://classic.clinicaltrials.gov/ct2/show/NCT05101187?term=amphotericin&recrs=abdf&draw=2&rank=6
  • Panahi, Y., M. Farshbaf, M. Mohammadhosseini, M. Mirahadi, R. Khalilov, S. Saghfi, and A. Akbarzadeh. 2017. “Recent Advances on Liposomal Nanoparticles: synthesis, Characterization and Biomedical Applications.” Artificial Cells, Nanomedicine, and Biotechnology 45 (4): 788–799. https://doi.org/10.1080/21691401.2017.1282496.
  • Paulo, C. S. O., M. Vidal, and L. S. Ferreira. 2010. “Antifungal Nanoparticles and Surfaces.” Biomacromolecules 11 (10): 2810–2817. https://doi.org/10.1021/bm100893r.
  • Prajapati, V. K., K. Awasthi, S. Gautam, T. P. Yadav, M. Rai, O. N. Srivastava, and S. Sundar. 2011. “Targeted Killing of Leishmania donovani in Vivo and in Vitro with Amphotericin B Attached to Functionalized Carbon Nanotubes.” The Journal of Antimicrobial Chemotherapy 66 (4): 874–879. https://doi.org/10.1093/jac/dkr002.
  • Pruthi, J., N. K. Mehra, and N. K. Jain. 2012. “Macrophages Targeting of Amphotericin B through Mannosylated Multiwalled Carbon Nanotubes.” Journal of Drug Targeting 20 (7): 593–604. https://doi.org/10.3109/1061186X.2012.697168.
  • Radwan, M. A., B. T. AlQuadeib, L. Šiller, M. C. Wright, and B. Horrocks. 2017. “Oral Administration of Amphotericin B Nanoparticles: antifungal Activity, Bioavailability and Toxicity in Rats.” Drug Delivery 24 (1): 40–50. https://doi.org/10.1080/10717544.2016.1228715.
  • Rajablou, K., H. Attar, S. K. Sadjady, and A. Heydarinasab. 2023. “DSPC Based Polymeric Micelles Loaded with Amphotericin B: synthesis, Characterization, and in Vitro Study.” Nanomedicine Research Journal 8 (1): 37–49. https://doi.org/10.22034/nmrj.2023.01.004.
  • Ravichandran, V., V. Kesavan, S. Cojean, P. M. Loiseau, and A. Jayakrishnan. 2018. “Polysorbate Surfactants as Drug Carriers: Tween 20-Amphotericin B Conjugates as anti-Fungal and anti-Leishmanial Agents.” Current Drug Delivery 15 (7): 1028–1037. https://doi.org/10.2174/1567201815666180503122829.
  • Ravikumar, T., H. Murata, R. R. Koepsel, and A. J. Russell. 2006. “Surface-Active Antifungal Polyquaternary Amine.” Biomacromolecules 7 (10): 2762–2769. https://doi.org/10.1021/bm060476w.
  • Ray, L., R. Karthik, V. Srivastava, S. P. Singh, A. B. Pant, N. Goyal, and K. C. Gupta. 2021. “Efficient Antileishmanial Activity of Amphotericin B and Piperine Entrapped in Enteric Coated Guar Gum Nanoparticles.” Drug Delivery and Translational Research 11 (1): 328–130. https://doi.org/10.1007/s13346-020-00712-9.
  • Ribeiro, T. G., M. A. Chávez-Fumagalli, D. G. Valadares, J. R. França, L. B. Rodrigues, M. C. Duarte, P. S. Lage, et al. 2014. “Novel Targeting Using Nanoparticles: An Approach to the Development of an Effective anti-Leishmanial Drug-Delivery System.” International Journal of Nanomedicine 9: 877–890. https://doi.org/10.2147/ijn.S55678.
  • Riezk, A., K. Van Bocxlaer, V. Yardley, S. Murdan, and S. L. Croft. 2020. “Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis.” Molecules (Basel, Switzerland) 25 (17): 4002. https://www.mdpi.com/1420-3049/25/17/4002. https://doi.org/10.3390/molecules25174002.
  • Rochelle do Vale Morais, A., A. L. Silva, S. Cojean, K. Balaraman, C. Bories, S. Pomel, G. Barratt, E. S. T. do Egito, and P. M. Loiseau. 2018. “In-Vitro and in-Vivo Antileishmanial Activity of Inexpensive Amphotericin B Formulations: Heated Amphotericin B and Amphotericin B-Loaded Microemulsion.” Experimental Parasitology 192: 85–92. https://doi.org/10.1016/j.exppara.2018.07.017.
  • Rodríguez-Pérez, Laura, Ma Ángeles Herranz, and Nazario Martín. 2013. “The Chemistry of Pristine Graphene.” Chemical Communications 49 (36): 3721. https://doi.org/10.1039/c3cc38950b.
  • Saldanha, C. A., M. P. Garcia, D. C. Iocca, L. G. Rebelo, A. C. O. Souza, A. L. Bocca, M. d F. M. Almeida Santos, P. C. Morais, and R. B. Azevedo. 2016. “Antifungal Activity of Amphotericin B Conjugated to Nanosized Magnetite in the Treatment of Paracoccidioidomycosis.” PLoS Neglected Tropical Diseases 10 (6): e0004754. https://doi.org/10.1371/journal.pntd.0004754.
  • Santos, D. C. M. d., M. L. S. de Souza, E. M. Teixeira, L. L. Alves, J. M. C. Vilela, M. Andrade, M. d G. Carvalho, A. P. Fernandes, L. A. M. Ferreira, and M. M. G. Aguiar. 2018. “A New Nanoemulsion Formulation Improves Antileishmanial Activity and Reduces Toxicity of Amphotericin B.” Journal of Drug Targeting 26 (4): 357–364. https://doi.org/10.1080/1061186X.2017.1387787.
  • Schröfel, A., G. Kratošová, I. Šafařík, M. Šafaříková, I. Raška, and L. M. Shor. 2014. “Applications of Biosynthesized Metallic Nanoparticles – a Review.” Acta Biomaterialia 10 (10): 4023–4042. https://doi.org/10.1016/j.actbio.2014.05.022.
  • Shubayev, V. I., T. R. Pisanic, 2nd, and S. Jin. 2009. “Magnetic Nanoparticles for Theragnostics.” Advanced Drug Delivery Reviews 61 (6): 467–477. https://doi.org/10.1016/j.addr.2009.03.007.
  • Singh, Aakriti, Sandeep Sharma, Ganesh Yadagiri, Shabi Parvez, Ritika Gupta, Nitin Kumar Singhal, Nikhil Koratkar, et al. 2020. “Sensible Graphene Oxide Differentiates Macrophages and Leishmania: A Bio-Nano Interplay in Attenuating Intracellular Parasite.” RSC Advances 10 (46): 27502–27511. https://doi.org/10.1039/d0ra04266h.
  • Singh, S. K., M. K. Singh, P. P. Kulkarni, V. K. Sonkar, J. J. Grácio, and D. Dash. 2012. “Amine-Modified Graphene: thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical Applications.” ACS Nano 6 (3): 2731–2740. https://doi.org/10.1021/nn300172t.
  • Single Dose Liposomal Amphotericin for Asymptomatic Cryptococcal Antigenemia (ACACIA). 2023. (April 12, https://classic.clinicaltrials.gov/ct2/show/NCT03945448?term=amphotericin&recrs=abdf&draw=2&rank=4
  • Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. 2015. “Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.” Nano-Micro Letters 7 (3): 219–242. https://doi.org/10.1007/s40820-015-0040-x.
  • Slowing, I., B. Trewyn, S. Giri, and V. Lin. 2007. “Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications.” Advanced Functional Materials 17 (8): 1225–1236. https://doi.org/10.1002/adfm.200601191.
  • Song, Z., L. Zhu, H. Xu, Y. Wen, and R. Feng. 2023. “Phenylboronic Acid-Installed Poly(Isobutene-Alt-Maleic Anhydride) Polymeric Micelles for pH-Dependent Release of Amphotericin B.” Journal of Drug Delivery Science and Technology 81: 104225. https://doi.org/10.1016/j.jddst.2023.104225.
  • Souza, Victor, Carolina Rodrigues, Sara Valente, Catarina Pimenta, João Pires, Marta Alves, Catarina Santos, Isabel Coelhoso, and Ana Fernando. 2020. “Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat.” Coatings 10 (2): 110. https://doi.org/10.3390/coatings10020110.
  • Su, C., Y. Liu, Y. He, and J. Gu. 2018. “Analytical Methods for Investigating in Vivo Fate of Nanoliposomes: A Review.” Journal of Pharmaceutical Analysis 8 (4): 219–225. https://doi.org/10.1016/j.jpha.2018.07.002.
  • Sunoqrot, S., A. G. Al-Bakri, L. H. Ibrahim, and N. a Aldaken. 2022. “Amphotericin B-Loaded Plant-Inspired Polyphenol Nanoparticles Enhance Its Antifungal Activity and Biocompatibility.” ACS Applied Bio Materials 5 (11): 5156–5164. https://doi.org/10.1021/acsabm.2c00537.
  • Tripathi, P., M. Talat, A. K. Vishwakarma, M. A. Shaz, P. Kumar, B. K. Gupta, and O. N. Srivastava. 2019. “A Facile Synthesis of Alkaline Electrolyte Based Graphene Sheets, Their Functionalization and Attachment of Some Drugs.” Journal of Nanoscience and Nanotechnology 19 (9): 5633–5643. https://doi.org/10.1166/jnn.2019.16543.
  • Tutaj, K., R. Szlazak, K. Szalapata, J. Starzyk, R. Luchowski, W. Grudzinski, M. Osinska-Jaroszuk, A. Jarosz-Wilkolazka, A. Szuster-Ciesielska, and W. I. Gruszecki. 2016. “Amphotericin B-Silver Hybrid Nanoparticles: synthesis, Properties and Antifungal Activity.” Nanomedicine: Nanotechnology, Biology, and Medicine 12 (4): 1095–1103. https://doi.org/10.1016/j.nano.2015.12.378.
  • Ulag, S., S. E. Celik, M. Sengor, and O. Gunduz. 2022. “Fabrication of Amphotericin-B-Loaded Sodium Alginate Nanoparticles for Biomedical Applications.” BioNanoScience 12 (4): 1230–1237. https://doi.org/10.1007/s12668-022-01018-5.
  • Uroro, E. O., R. Bright, A. Hayles, and K. Vasilev. 2022. “Lipase-Responsive Amphotericin B Loaded PCL Nanoparticles for Antifungal Therapies.” Nanomaterials 13 (1): 155. https://www.mdpi.com/2079-4991/13/1/155. https://doi.org/10.3390/nano13010155.
  • Van de Ven, H., C. Paulussen, P. B. Feijens, A. Matheeussen, P. Rombaut, P. Kayaert, G. Van den Mooter, et al. 2012. “PLGA Nanoparticles and Nanosuspensions with Amphotericin B: Potent in Vitro and in Vivo Alternatives to Fungizone and AmBisome.” Journal of Controlled Release 161 (3): 795–803. https://doi.org/10.1016/j.jconrel.2012.05.037.
  • Vashist, S. K., D. Zheng, G. Pastorin, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu. 2011. “Delivery of Drugs and Biomolecules Using Carbon Nanotubes.” Carbon 49 (13): 4077–4097. https://doi.org/10.1016/j.carbon.2011.05.049.
  • Vediyappan, G., T. Rossignol, and C. d’Enfert. 2010. “Interaction of Candida albicans Biofilms with Antifungals: transcriptional Response and Binding of Antifungals to Beta-Glucans.” Antimicrobial Agents and Chemotherapy 54 (5): 2096–2111. https://doi.org/10.1128/aac.01638-09.
  • Vitorino, L. S., T. C. dos Santos, I. A. A. Bessa, E. C. S. Santos, B. R. F. Verçoza, L. A. S. de Oliveira, J. C. F. Rodrigues, and C. M. Ronconi. 2022. “Amphotericin-B-Loaded Polymer-Functionalized Reduced Graphene Oxides for Leishmania amazonensis Chemo-Photothermal Therapy.” Colloids and Surfaces. B, Biointerfaces 209 (Pt 1): 112169. https://doi.org/10.1016/j.colsurfb.2021.112169.
  • Vogelsinger, H., S. Weiler, A. Djanani, J. Kountchev, R. Bellmann-Weiler, C. J. Wiedermann, and R. Bellmann. 2006. “Amphotericin B Tissue Distribution in Autopsy Material after Treatment with Liposomal Amphotericin B and Amphotericin B Colloidal Dispersion.” The Journal of Antimicrobial Chemotherapy 57 (6): 1153–1160. https://doi.org/10.1093/jac/dkl141.
  • Vossoughi, M., S. Gojgini, A. Kazemi, I. Alemzadeh, and M. Zeinali. 2009. “Conjugation of Amphotericin B to Carbon Nanotubes via Amide-Functionalization for Drug Delivery Applications.” Engineering Letters 17 (4): 293.
  • Wahajuddin, and Arora, S. 2012. “Superparamagnetic Iron Oxide Nanoparticles: magnetic Nanoplatforms as Drug Carriers.” International Journal of Nanomedicine 7: 3445–3471. https://doi.org/10.2147/ijn.S30320.
  • Wang, X., I. S. Mohammad, L. Fan, Z. Zhao, M. Nurunnabi, M. A. Sallam, J. Wu, Z. Chen, L. Yin, and W. He. 2021. “Delivery Strategies of Amphotericin B for Invasive Fungal Infections.” Acta Pharmaceutica Sinica. B 11 (8): 2585–2604. https://doi.org/10.1016/j.apsb.2021.04.010.
  • Wasan, E., T. Mandava, P. Crespo-Moran, A. Nagy, and K. M. Wasan. 2022. “Review of Novel Oral Amphotericin B Formulations for the Treatment of Parasitic Infections.” Pharmaceutics 14 (11): 2316. https://www.mdpi.com/1999-4923/14/11/2316. https://doi.org/10.3390/pharmaceutics14112316.
  • Wedmore, I., J. G. McManus, A. E. Pusateri, and J. B. Holcomb. 2006. “A Special Report on the Chitosan-Based Hemostatic Dressing: experience in Current Combat Operations.” The Journal of Trauma 60 (3): 655–658. https://doi.org/10.1097/01.ta.0000199392.91772.44.
  • Wijnant, G. J., K. Van Bocxlaer, V. Yardley, A. Harris, M. Alavijeh, R. Silva-Pedrosa, S. Antunes, I. Mauricio, S. Murdan, and S. L. Croft. 2018. “Comparative Efficacy, Toxicity and Biodistribution of the Liposomal Amphotericin B Formulations Fungisome(®) and AmBisome(®) in Murine Cutaneous Leishmaniasis.” International Journal for Parasitology. Drugs and Drug Resistance 8 (2): 223–228. https://doi.org/10.1016/j.ijpddr.2018.04.001.
  • Wu, W., S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.-P. Briand, R. Gennaro, M. Prato, and A. Bianco. 2005. “Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes.” Angewandte Chemie (International ed. in English) 44 (39): 6358–6362. https://doi.org/10.1002/anie.200501613.
  • Yazdani, S., M. Mozaffarian, G. Pazuki, N. Hadidi, I. Gallego, G. Puras, and J. L. Pedraz. 2022. “Design of Double Functionalized Carbon Nanotube for Amphotericin B and Genetic Material Delivery.” Scientific Reports 12 (1): 21114. https://doi.org/10.1038/s41598-022-25222-1.
  • Yoon, G., J. W. Park, and I.-S. Yoon. 2013. “Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs): Recent Advances in Drug Delivery.” Journal of Pharmaceutical Investigation 43 (5): 353–362. https://doi.org/10.1007/s40005-013-0087-y.
  • Yusuf, A., A. R. Z. Almotairy, H. Henidi, O. Y. Alshehri, and M. S. Aldughaim. 2023. “Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems.” Polymers (Basel) 15 (7). https://doi.org/10.3390/polym15071596.
  • Zadeh Mehrizi, T. 2023. “Assessment of the Effect of Polymeric Nanoparticles on Storage and Stability of Blood Products (Red Blood Cells, Plasma, and Platelet).” Polymer Bulletin 80 (3): 2263–2298. https://doi.org/10.1007/s00289-022-04147-9.
  • Zadeh Mehrizi, T., and S. Amini Kafiabad. 2021. “Evaluation of the Effects of Nanoparticles on the Therapeutic Function of Platelet: A Review.” Journal of Pharmacy and Pharmacology 74 (2): 179–190. https://doi.org/10.1093/jpp/rgab089.
  • Zadeh Mehrizi, T., and P. Eshghi. 2022. “Investigation of the Effect of Nanoparticles on Platelet Storage Duration 2010–2020.” International Nano Letters 12 (1): 15–45. https://doi.org/10.1007/s40089-021-00340-2.
  • Zadeh Mehrizi, T., A. Khamesipour, M. Shafiee Ardestani, H. Ebrahimi Shahmabadi, M. Haji Molla Hoseini, N. Mosaffa, and A. Ramezani. 2019. “Comparative Analysis between Four Model Nanoformulations of Amphotericin B-Chitosan, Amphotericin B-Dendrimer, Betulinic Acid-Chitosan and Betulinic Acid-Dendrimer for Treatment of Leishmania major: real-Time PCR Assay plus.” International Journal of Nanomedicine 14 (null): 7593–7607. https://doi.org/10.2147/IJN.S220410.
  • Zadeh Mehrizi, T., Mosaffa, N., Hoseini, H. M. M., Shafiee Ardestani, M., Khamesipour, A., Ebrahimi Shahmabadi, H., Pirali Hamedani, M., Mardani Dashti, Y, and Ramezani, A., amp, amp, lrm 2018. “In Vivo Therapeutic Effects of Four Synthesized Antileishmanial Nanodrugs in the Treatment of Leishmaniasis.” Archives of Clinical Infectious Diseases 13 (5): e80314. https://doi.org/10.5812/archcid.80314.
  • Zadeh Mehrizi, T., N. Mosaffa, A. Khamesipour, M. Haji Molla Hoseini, H. Ebrahimi Shahmabadi, M. Shafiee Ardestani, and A. Ramezani. 2021. “A Novel Nanoformulation for Reducing the Toxicity and Increasing the Efficacy of Betulinic Acid Using Anionic Linear Globular Dendrimer.” Journal of Nanostructures 11 (1): 143–152. https://doi.org/10.22052/jns.2021.01.016.
  • Zadeh Mehrizi, T., M. Pirali Hamedani, H. Ebrahimi Shahmabadi, M. Mirzaei, M. Shafiee Ardestani, M. Haji Molla Hoseini, N. Mosaffa, et al. 2020. “Effective Materials of Medicinal Plants for Leishmania Treatment in Vivo Environment [Review].” Journal of Medicinal Plants 19 (74): 39–62. https://doi.org/10.29252/jmp.19.74.39.
  • Zadeh Mehrizi, T., and M. Shafiee Ardestani. 2022. “Application of Non-Metal Nanoparticles, as a Novel Approach, for Improving the Stability of Blood Products: 2011–2021.” Progress in Biomaterials 11 (2): 137–161. https://doi.org/10.1007/s40204-022-00188-5.
  • Zadeh Mehrizi, T., M. Shafiee Ardestani, M. Haji Molla Hoseini, A. Khamesipour, N. Mosaffa, and A. Ramezani. 2018. “Novel Nanosized Chitosan-Betulinic Acid against Resistant Leishmania Major and First Clinical Observation of Such Parasite in Kidney.” Scientific Reports 8 (1): 11759. https://doi.org/10.1038/s41598-018-30103-7.
  • Zadeh Mehrizi, T., M. Shafiee Ardestani, M. Mirzaei, and A. Javanmard. 2022. “A Review Study on the Application of Polymeric-Based Nanoparticles as a Novel Approach for Enhancing the Stability of Albumins.” Nanomedicine Journal 9 (4): 261–272. https://doi.org/10.22038/nmj.2022.65394.1686.
  • Zadeh Mehrizi, T., M. Shafiee Ardestani, S. M. Rezayat, and A. Javanmard. 2023. “A Review Study of the Use of Modified Chitosan as a New Approach to Increase the Preservation of Blood Products (Erythrocytes, Platelets, and Plasma Products): 2010-2022.” Nanomedicine Journal 10 (1): 16–32. https://doi.org/10.22038/nmj.2022.65972.1693.
  • Zareshahrabadi, Z., M. Khorram, K. Pakshir, A.-M. Tamaddon, M. Jafari, H. Nouraei, N. T. Ardekani, et al. 2022. “Magnetic Chitosan Nanoparticles Loaded with Amphotericin B: Synthesis, Properties and Potentiation of Antifungal Activity against Common Human Pathogenic Fungal Strains.” International Journal of Biological Macromolecules 222 (Pt A): 1619–1631. https://doi.org/10.1016/j.ijbiomac.2022.09.244.
  • Zeng, Q., D. Shao, X. He, Z. Ren, W. Ji, C.-X. Shan, S. Qu, J. Li, L. Chen, and Q. Li. 2016. “Carbon Dots as a Trackable Drug Delivery Carrier for Localized Cancer Therapy in Vivo.” Journal of Materials Chemistry. B 4 (30): 5119–5126. https://doi.org/10.1039/C6TB01259K.
  • Zhang, C., M. Chen, G. Wang, W. Fang, C. Ye, H. Hu, Z. Fa, J. Yi, and W-q Liao. 2016. “Pd@Ag Nanosheets in Combination with Amphotericin B Exert a Potent anti-Cryptococcal Fungicidal Effect.” Plos ONE 11 (6): e0157000. https://doi.org/10.1371/journal.pone.0157000.
  • Zhang, K., P.-P. Yang, J.-P. Zhang, L. Wang, and H. Wang. 2017. “Recent Advances of Transformable Nanoparticles for Theranostics.” Ce Chemical Letters 28 (9): 1808–1816. https://doi.org/10.1016/j.cclet.2017.07.001.
  • Zhong, X., J. Yang, H. Liu, Z. Yang, and P. Luo. 2023. “Potential Lipid-Based Strategies of Amphotericin B Designed for Oral Administration in Clinical Application.” Drug Delivery 30 (1): 2161671. https://doi.org/10.1080/10717544.2022.2161671.
  • Zuo, J., T. Jiang, X. Zhao, X. Xiong, S. Xiao, and Z. Zhu. 2015. “Preparation and Application of Fluorescent Carbon Dots.” Journal of Nanomaterials 2015: 1–13. https://doi.org/10.1155/2015/787862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.