256
Views
44
CrossRef citations to date
0
Altmetric
Original

Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media

, , &
Pages 99-112 | Received 19 Mar 2008, Published online: 10 Jul 2009

References

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002; 99: 12617–12621
  • Alivisatos AP. Less is more in medicine – sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy. Scientific American 2001; 285: 66–73
  • Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnol 2004; 22: 47–52
  • Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett 2004; 4: 2479–2481
  • Blakemore R. Magnetotactic bacteria. Science 1975; 190: 377–379
  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sci 2005; 88: 412–419
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006; 6: 866–870
  • Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupational and Environmental Medicine 2000; 57(10)685–691
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175: 191–199
  • Brown GE, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 1999; 99: 77–174
  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281: 2013–2016
  • Cedervall T, Lynch I, Foy M, Berggad T, Donnelly SC, Cagney G, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie – Int Ed 2007a; 46: 5754–5756
  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 2007b; 104: 2050–2055
  • Colvin VL. The potential environmental impact of engineered nanomaterials. Nature Biotechnol 2003; 21: 1166–1170
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005; 1: 325–327
  • Cyrys J, Stolzel M, Heinrich J, Kreyling WG, Menzel N, Wittmaack K, et al. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci Total Environ 2003; 305: 143–156
  • Chah S, Hammond MR, Zare RN. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 2005; 12: 323–328
  • Cheng YS, Zhou Y, Irvin CM, Pierce RH, Naar J, Backer LC, et al. Characterization of marine aerosol for assessment of human exposure to brevetoxins. Environ Health Perspect 2005; 113: 638–643
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006; 6: 662–668
  • Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004; 104: 293–346
  • de Lorenzo AJ. The olfactory neuron and the blood-brain barrier. Taste and smell in vertebrates, G Wolstenholme, J Knight. Churchill, LondonUK 1970; 151–176
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4: 11–18
  • DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, et al. Divalent metal nanoparticles. Science 2007; 315: 358–361
  • Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 2005; 5: 2448–2464
  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med – Deposition Clearance and Effects in the Lung 2002; 15: 213–220
  • Donaldson K, Li XY, Macnee W. Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 1998; 29: 553–560
  • Donlin MJ, Frey RF, Putnam C, Proctor JK, Bashkin JK. Analysis of iron in ferritin, the iron-storage protein – a general chemistry experiment. J Chem Educ 1998; 75: 437–441
  • Driscoll KE. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhalat Toxicol 1996; 8(suppl.): 139–153
  • Dunford R, Salinaro A, Cai LZ, Serpone N, Horikoshi S, Hidaka H, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 1997; 418: 87–90
  • El-Sayed IH, Huang XH, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006; 239: 129–135
  • Evelyn A, Mannick S, Sermon PA. Unusual carbon-based nanofibers and chains among diesel-emitted particles. Nano Lett 2003; 3: 63–64
  • Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006; 103: 6315–6320
  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Communic 2002; 294: 116–119
  • Freitas RAJ. 1999. Nanomedicine. Vol. I: Basic capabilities. Georgetown, TX: Landes Bioscience.
  • Gallego O, Puntes V. What can nanotechnology do to fight cancer?. Clin Transl Oncol 2006; 8: 788–95
  • Gider S, Awschalom DD, Douglas T, Mann S, Chaparala M. Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 1995; 268: 77–80
  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environ Health Perspect 2007; 115: 403–409
  • Gopinath PG, Gopinath G, Kumar TCA. Target site of intranasally sprayed substances and their transport across nasal-mucosa – new insight into intranasal route of drug-delivery. Curr Therap Res – Clin Experimental 1978; 23: 596–607
  • Goyer RA. Nutrition and metal toxicity. Am J Clin Nutrit 1995; 61: S646–650
  • Greim H, Borm P, Schins R, Donaldson K, Driscoll K, Hartwig A, et al. Toxicity of fibers and particles – report of the workshop held in Munich, Germany, 26–27 October 2000. Inhalat Toxicol 2001; 13: 737–754
  • Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005; 26: 1565–1573
  • Hidaka H, Horikoshi S, Serpone N, Knowland J. In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J Photochem Photobiol A-Chem 1997; 111: 205–213
  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004; 4: 2163–2169
  • Hughes LS, Cass GR, Gone J, Ames M, Olmez I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ Sci Technol 1998; 32: 1153–1161
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 2005; 19: 975–983
  • Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK. Catalytic activity of Au nanoparticles. Nano Today 2007; 2: 14–18
  • Hyung H, Fortner JD, Hughes JB, Kim JH. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 2007; 41: 179–184
  • Jackson AM, Myerson JW, Stellacci F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Materials 2004; 3: 330–336
  • Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 2001; 17: 6782–6786
  • Johnston CJ, Finkelstein JN, Mercer P, Corson N, Gelein R, Oberdorster G. Pulmonary effects induced by ultrafine PTFE particles. Toxicol Appl Pharmacol 2000; 168: 208–215
  • Joo SH, Feitz AJ, Waite TD. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environmental Science & Technology 2004; 38(7)2242–2247
  • Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology 2005; 16: 1221–1233
  • Kan AT, Tomson MB. Ground-water transport of hydrophobic organic-compounds in the presence of dissolved organic-matter. Environ Toxicol Chem 1990; 9: 253–263
  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL. Migration of plutonium in ground water at the Nevada Test Site. Nature 1999; 397: 56–59
  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005; 5: 331–338
  • Kirschvink JL, Walker MM, Diebel CE. Magnetite-based magnetoreception. Curr Opin Neurobiol 2001; 11: 462–467
  • Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, et al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 2006; 6: 110–115
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47: 65–81
  • Kulmala M, Vehkamaki H, Petajda T, Dal Maso M, Lauri A, Kerminen VM, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J Aerosol Sci 2004; 35: 143–176
  • Kunzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 2005; 113: 201–206
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sci 2004; 77: 126–134
  • Lazaro FJ, Abadia AR, Romero MS, Gutierrez L, Lazaro J, Morales MP. Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection. Biochimica et Biophysica Acta-Molec Basis of Dis 2005; 1740: 434–445
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 2003; 111: 455–460
  • Liopo AV, Stewart MP, Hudson J, Tour JM, Pappas TC. Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J Nanosci Nanotechnol 2006; 6: 1365–1374
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189–207
  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006; 6: 1121–1125
  • Margeat O, Ciuculescu D, Lecante P, Respaud M, Amiens C, Chaudret B. NiFe nanoparticles: A soft magnetic material?. Small 2007; 3: 451–458
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy – mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387–6392
  • Matsunaga T, Sakaguchi T. Molecular mechanism of magnet formation in bacteria. J Biosci Bioengineering 2000; 90: 1–13
  • Matsunaga T, Togo H, Kikuchi T, Tanaka T. Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp AMB-1. Biotechnol Bioengineering 2000; 70: 704–709
  • Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 2002; 298: 1209–1213
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY, Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155: 377–384
  • Murday J. S. The coming revolution: science and technology of nanoscale structures. The AMPTIAC Newsl 2002; 6: 5–10
  • Murr LE, Esquivel EV, Bang JJ. Characterization of nanostructure phenomena in airborne particulate aggregates and their potential for respiratory health effects. J Mater Sci Mater Med 2004; 15: 237–47
  • Murugesan S, Park TJ, Yang HC, Mousa S, Linhardt RJ. Blood compatible carbon nanotubes – nano-based neoproteoglycans. Langmuir 2006; 22: 3461–3463
  • Nagaveni K, Sivalingam G, Hegde MS, Madras G. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science & Technology 2004; 38(5)1600–1604
  • Nath N, Chilkoti A. Interfacial phase transition of an environmentally responsive elastin biopolymer adsorbed on functionalized gold nanoparticles studied by colloidal surface plasmon resonance. J Am Chem Soc 2001; 123: 8197–8202
  • Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Materials 2003; 15: 1957–1962
  • National Nanotechnology Initiative (NNI) 2004. What is nanotechnology? Accessed from the internet website: http://www.nano.gov/html/facts/whatIsNano.html.
  • National Research Council (NRC). 1983. Risk assessment in the Federal Government: managing the process. Washington DCUS: National Academy Press.
  • O'Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, et al. Biogenically driven organic contribution to marine aerosol. Nature 2004; 431: 676–680
  • Oberdörster E. Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives 2004; 112(10)1058–1062
  • Oberdörster G. Toxicology of ultrafine particles: in vivo studies. Philosoph Transact Roy Soc London Series A – Math Phys Engineering Sci 2000; 358: 2719–2739
  • Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury – studies with ultrafine particles. Environ Health Perspect 1992; 97: 193–199
  • Oberdörster G, Finkelstein J, Johnston C, Gelein R, Cox C, Baggs R, et al. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 2000; 96: 5–74
  • Oberdörster G, Oberdörster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823–839
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhalat Toxicol 2004; 16: 437–445
  • Oberdörster G, Yu CP. The carcinogenic potential of inhaled diesel exhaust – a particle effect. J Aerosol Sci 1990; 21: S397–401
  • Okamura Y, Takeyama H, Matsunaga T. Two-dimensional analysis of proteins specific to the bacterial magnetic particle membrane from Magnetospirillum sp AMB-1. Appl Biochem Biotechnol 2000; 84–6: 441–446
  • Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 1999; 37: 121–137
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73: 1712–1720
  • Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, et al. Shape control of CdSe nanocrystals. Nature 2000; 404: 59–61
  • Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol 2003; 7: 609–615
  • Pernodet N, Fang XH, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, et al. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006; 2: 766–773
  • Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001; 291: 2115–2117
  • Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP. Synthesis of hcp-Co nanodisks. J Am Chem Soc 2002; 124: 12874–12880
  • Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, et al. Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells. J Photochem Photobiol B-Biol 2002; 67: 157–162
  • Ren L, Chow GM. Synthesis of nir-sensitive Au-Au2S nanocolloids for drug delivery. Mater Sci Engineering C-Biomimetic Supramolec Syst 2003; 23: 113–116
  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006; 312: 1027–1030
  • Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: A novel family of reusable catalysts?. Chem Rev 2002; 102: 3757–3778
  • Sakurai T, Kaise T, Matsubara C. Inorganic and methylated arsenic compounds induce cell death in murine macrophages via different mechanisms. Chem Res Toxicol 1998; 11: 273–283
  • Savic R, Luo LB, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003; 300: 615–618
  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett 2004; 4: 1881–1887
  • Seifert G. Nanomaterials – nanocluster magic. Nature Materials 2004; 3: 77–78
  • Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005; 436: 568–572
  • Serpone N, Salinaro A, Emeline A. Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: Efforts to limit DNA damage by particle surface modification. Proc SPIE 2001; 4258: 86–98
  • Service RF. Is nanotechnology dangerous?. Science 2000; 290: 1526–1527
  • Service RF. Nanotechnology takes aim at cancer. Science 2005; 310: 1132–1134
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005; 21: 10644–10654
  • Shvedova AA, Kisin E, Keshava N, Murray AR, Gorelik O, Arepalli S, et al. Cytotoxic and genotoxic effects of single wall carbon nanotube exposure on human keratinocytes and bronchial epithelial cells. Abstracts of Papers Am Chem Soc 2004a; 227: U1233–1233
  • Shvedova AA, Kisin E, Murray A, Schwegler-Berry D, Gandelsman V, Baron P, et al. Exposure of human bronchial cells to carbon nanotubes caused oxidative stress and cytotoxicity. Proc Meeting of the SFRR Eur (June 2004b; 26–29: 2003
  • Stone V, Donaldson K. Nanotoxicology-Signs of stress. Nature Nanotechnology 2006; 1(1)23–24
  • Suehiro T, Hirosaki N, Komeya K. Synthesis and sintering properties of aluminium nitride nanopowder prepared by the gas-reduction-nitridation method. Nanotechnology 2003; 14: 487–491
  • Tang J, Myers M, Bosnick KA, Brus LE. Magnetite Fe3O4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics. J Phys Chem B 2003; 107: 7501–7506
  • Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalat Toxicol 2000; 12: 1113–1126
  • Tran CL, Jones AD, Cullen RT, Donaldson K. Influence of particle characteristics on the clearance of low toxicity dusts from lungs. J Aerosol Sci 1998; 29(suppl.): S1269–1270
  • Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G, et al. Cellular uptake and toxicity of AU(55) clusters. Small 2005; 1: 841–844
  • US Environmental Protection Agency (US EPA). 2004. Air quality criteria for particulate matter. Washington DCUS: EPA.
  • Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 2006; 7: 415–418
  • Walter P, Welcomme E, Hallegot P, Zaluzec NJ, Deeb C, Castaing J, et al. Early Use of PbS Nanotechnology for an Ancient Hair Dyeing Formula. Nano Lett. 2006; 6(10)2215–2219
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004; 77: 117–125
  • Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, et al. superparamagnetic iron-oxide – pharmacokinetics and toxicity. Am J Roentgenol 1989; 152: 167–173
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology 2002; 184(3)172–179
  • Woehrle GH, Brown LO, Hutchison JE. Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: Scope and mechanism of ligand exchange. J Am Chem Soc 2005; 127: 2172–2183
  • Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6: 1261–1268
  • Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, et al. Active oxygen species generated from photoexcited fullerene (C-60) as potential medicines: O-2(-center dot) versus O-1(2). J Am Chem Soc 2003; 125: 12803–12809
  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular-permeability in a human tumor xenograft – molecular-size dependence and cutoff size. Cancer Res 1995; 55: 3752–3756
  • Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation. J Phys Chem B 2006; 110: 12910–12915

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.