51
Views
0
CrossRef citations to date
0
Altmetric
Review

Harnessing exosomes and plant-derived exosomes as nanocarriers for the efficient delivery of plant bioactives

ORCID Icon, ORCID Icon & ORCID Icon
Received 29 Feb 2024, Accepted 08 May 2024, Published online: 20 Jun 2024

References

  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403. doi:10.3390/nano10071403
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Obj. 2019;20:100397. doi:10.1016/j.nanoso.2019.100397
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharmaceut Sin B. 2019;9(6):1145–1162. doi:10.1016/j.apsb.2019.08.003
  • Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomat. 2019;2019:3702518. doi:10.1155/2019/3702518
  • Butreddy A, Kommineni N, Dudhipala N. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: insights from drug delivery to clinical perspectives. Nanomaterials. 2021;11(6):1481. doi:10.3390/nano11061481
  • Srivastava A, Amreddy N, Pareek V, et al. Progress in extracellular vesicle biology and their application in cancer medicine. Wiley Interdiscipl Rev. 2020;12(4):e1621. doi:10.1002/wnan.1621
  • Yi Q, Xu Z, Thakur A, et al. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res. 2023;190:106733. doi:10.1016/j.phrs.2023.106733
  • Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharmaceut Sci. 2022;17(1):53–69. doi:10.1016/j.ajps.2021.05.006
  • Cong M, Tan S, Li S, et al. Technology insight: plant-derived vesicles – how far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev. 2022;182:114108. doi:10.1016/j.addr.2021.114108
  • Logozzi M, Di Raimo R, Mizzoni D, Fais S. The potentiality of plant-derived nanovesicles in human health—a comparison with human exosomes and artificial nanoparticles. Inter J Mol Sci. 2022;23(9):4919. doi:10.3390/ijms23094919
  • Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Comm Signal. 2022;20(1):145. doi:10.1186/s12964-022-00959-4
  • Agrahari V, Agrahari V, Burnouf P-A, et al. Extracellular microvesicles as new industrial therapeutic frontiers. Trends Biotech. 2019;37(7):707–729. doi:10.1016/j.tibtech.2018.11.012
  • Riazifar M, Pone EJ, Lötvall J, Zhao W. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125–154. doi:10.1146/annurev-pharmtox-061616-030146
  • Srivastava A, Rathore S, Munshi A, Ramesh R, editors. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Seminars in cancer biology (vol. 86). Columbia, USA: Elsevier, Academic Press; 2022. p. 80–100. doi:10.1016/j.semcancer.2022.02.020
  • Subha D, Harshnii K, Madhikiruba K, et al. Plant derived exosome-like nanovesicles: an updated overview. Plant Nano Biol. 2023;3:100022. doi:10.1016/j.plana.2022.100022
  • Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Adv Med Biochem Genom Physiol Pathol. 2021;9(1):473–486. doi:10.1201/9781003180449-20
  • Mashouri L, Yousefi H, Aref AR, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:1–14. doi:10.1186/s12943-019-0991-5
  • Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021;10(8):1959. doi:10.3390/cells10081959
  • Di C, Zhang Q, Wang Y, et al. Exosomes as drug carriers for clinical application. Artif Cell Nanomed Biotechnol. 2018;46(Suppl. 3):564–570. doi:10.1080/21691401.2018.1501381
  • Martinez-Arroyo O, Ortega A, Redon J, Cortes R. Therapeutic potential of extracellular vesicles in hypertension-associated kidney disease. Hypertension. 2021;77(1):28–38. doi:10.1161/HYPERTENSIONAHA.120.16064
  • Wu S-C, Kuo P-J, Rau C-S, et al. Subpopulations of exosomes purified via different exosomal markers carry different microRNA contents. Inter J Med Sci. 2021;18(4):1058. doi:10.7150/ijms.52768
  • Jafari D, Shajari S, Jafari R, et al. Designer exosomes: a new platform for biotechnology therapeutics. BioDrugs. 2020;34:567–586. doi:10.1007/s40259-020-00434-x
  • Zhou Q-F, Cai Y-Z, Lin X-J. The dual character of exosomes in osteoarthritis: antagonists and therapeutic agents. Acta Biomaterialia. 2020;105:15–25. doi:10.1016/j.actbio.2020.01.040
  • Kandimalla R, Aqil F, Tyagi N, Gupta R. Milk exosomes: a biogenic nanocarrier for small molecules and macromolecules to combat cancer. Am J Reprod Immunol. 2021;85(2):e13349. doi:10.1111/aji.13349
  • Rahmati S, Karimi H, Alizadeh M, et al. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering. Hum Cell 2024;37(1):121–138. doi:10.1007/s13577-023-00994-4
  • Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Inter J Mol Sci. 2021;22(17):9543. doi:10.3390/ijms22179543
  • Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A comprehensive review on the applications of exosomes and liposomes in regenerative medicine and tissue engineering. Polymers. 2021;13(15):2529. doi:10.3390/polym13152529
  • Akuma P, Okagu OD, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. 2019;3:23. doi:10.3389/fsufs.2019.00023
  • Elkhoury K, Koçak P, Kang A, et al. Engineering smart targeting nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics. 2020;12(9):849. doi:10.3390/pharmaceutics12090849
  • Cabeza L, Perazzoli G, Peña M, et al. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Rel. 2020;327:296–315. doi:10.1016/j.jconrel.2020.08.018
  • Samanta S, Rajasingh S, Drosos N, et al. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin. 2018;39(4):501–513. doi:10.1038/aps.2017.162
  • Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Rel. 2021;329:894–906. doi:10.1016/j.jconrel.2020.10.020
  • Kwon S, Shin S, Do M, et al. Engineering approaches for effective therapeutic applications based on extracellular vesicles. J Control Rel. 2021;330:15–30. doi:10.1016/j.jconrel.2020.11.062
  • Nemati M, Singh B, Mir RA, et al. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Comm Signal. 2022;20(1):69. doi:10.1186/s12964-022-00889-1
  • Osteikoetxea X, Sódar B, Németh A, et al. Differential detergent sensitivity of extracellular vesicle subpopulations. Organ Biomol Chem. 2015;13(38):9775–9782. doi:10.1039/C5OB01451D
  • Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371(1):48–61. doi:10.1016/j.canlet.2015.10.020
  • Nahoko K, Yuko O, Yoshihiro A, et al. Highlighted paper selected by Editor-in-Chief: characterization of membrane integrity and morphological stability of human salivary exosomes. Biolog Pharmaceut Bull. 2017;40(8):1183–1191. doi:10.1248/bpb.b16-00891
  • Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant-derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–1573. doi:10.1002/mnfr.201300729
  • Subhankar Mandal SM. Curcumin, a promising anti-cancer therapeutic: it's bioactivity and development of drug delivery vehicles. 2016;6(2):43 – – 57.
  • Hata T, Murakami K, Nakatani H, et al. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010;396(2):528–533. doi:10.1016/j.bbrc.2010.04.135
  • Zhang B, Lai RC, Sim WK, et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. Inter J Mol Sci. 2021;22(2):720. doi:10.3390/ijms22020720
  • Prasai A, Jay JW, Jupiter D, et al. Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol. 2022;142(3):662–678. doi:10.1016/j.jid.2021.07.167
  • Chen Q, Li Q, Liang Y, et al. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharmaceut Sin B. 2022;12(2):907–923. doi:10.1016/j.apsb.2021.08.016
  • Kumar MN, Kalarikkal SP, Bethi CM, et al. An eco-friendly one-pot extraction process for curcumin and its bioenhancer, piperine, from edible plants in exosome-like nanovesicles. Green Chem. 2023;25(16):6472–6488. doi:10.1039/D3GC01287E
  • Emmanuela N, Muhammad DR, Iriawati, et al. Isolation of plant-derived exosome-like nanoparticles (PDENs) from Solanum nigrum L. berries and their effect on interleukin-6 expression as a potential anti-inflammatory agent. PLOS ONE. 2024;19(1):e0296259. doi:10.1371/journal.pone.0296259
  • Cai H, Huang L-Y, Hong R, et al. Momordica charantia exosome-like nanoparticles exert neuroprotective effects against ischemic brain injury via inhibiting matrix metalloproteinase 9 and activating the AKT/GSK3β signaling pathway. Front Pharmacol. 2022;13:908830. doi:10.3389/fphar.2022.908830
  • Kantarcıoğlu M, Yıldırım G, Oktar PA, et al. Coffee-derived exosome-like nanoparticles: are they the secret heroes? Turkish J Gastroenterol. 2023;34(2):161. doi:10.5152/tjg.2022.21895
  • Ou X, Wang H, Tie H, et al. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU. 1 axis. J Nanobiotechnol. 2023;21(1):160. doi:10.1186/s12951-023-01919-x
  • Seo K, Yoo JH, Kim J, et al. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale. 2023;15(12):5798–5808. doi:10.1039/D2NR07018A
  • Yan G, Xiao Q, Zhao J, et al. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Rel. 2024;367:425–440. doi:10.1016/j.jconrel.2024.01.060
  • Zhang S, Xia J, Zhu Y, et al. Establishing Salvia miltiorrhiza-derived exosome-like nanoparticles and elucidating their role in angiogenesis. Molecules. 2024;29(7):1599. doi:10.3390/molecules29071599
  • Kanchanapally R, Khan MA, Deshmukh SK, et al. Exosomal formulation escalates cellular uptake of honokiol leading to the enhancement of its antitumor efficacy. ACS Omega. 2020;5(36):23299–23307. doi:10.1021/acsomega.0c03136
  • Donoso-Quezada J, Guajardo-Flores D, Gonzalez-Valdez J. Enhanced exosome-mediated delivery of black bean phytochemicals (Phaseolus vulgaris L.) for cancer treatment applications. Biomed Pharmacother. 2020;131:110771. doi:10.1016/j.biopha.2020.110771
  • Kumar DN, Chaudhuri A, Dehari D, et al. Combination therapy comprising paclitaxel and 5-fluorouracil by using folic acid functionalized bovine milk exosomes improves the therapeutic efficacy against breast cancer. Life. 2022;12(8):1143. doi:10.3390/life12081143
  • Aqil F, Jeyabalan J, Agrawal AK, et al. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct. 2017;8(11):4100–4107. doi:10.1039/C7FO00882A
  • González-Sarrías A, Iglesias-Aguirre CE, Cortés-Martín A, et al. Milk-derived exosomes as nanocarriers to deliver curcumin and resveratrol in breast tissue and enhance their anticancer activity. Inter J Mol Sci. 2022;23(5):2860. doi:10.3390/ijms23052860
  • Wang H, Feng J, Ao F, et al. Tumor-derived exosomal microRNA-7-5p enhanced by verbascoside inhibits biological behaviors of glioblastoma in vitro and in vivo. Mol Ther-Oncolyt. 2021;20:569–582. doi:10.1016/j.omto.2020.12.006
  • Cui J, Wang X, Li J, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood–brain barrier for chemo-immunotherapy against glioblastoma. ACS Nano. 2023;17(2):1464–1484. doi:10.1021/acsnano.2c10219
  • Wang Q, Liu K, Cao X, et al. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioengin Transl Med. 2024;e10646. doi:10.1002/btm2.10646
  • Aqil F, Kausar H, Agrawal AK, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016;101(1):12–21. doi:10.1016/j.yexmp.2016.05.013
  • Perut F, Roncuzzi L, Avnet S, et al. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11(1):87. doi:10.3390/biom11010087
  • Lian MQ, Chng WH, Liang J, et al. Plant-derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications. J Extracell Ves. 2022;11(12):12283. doi:10.1002/jev2.12283
  • Liao W, Du Y, Zhang C, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019;86:1–14. doi:10.1016/j.actbio.2018.12.045
  • Di Giulio S, Carata E, Mariano S, Panzarini E. Plant extracellular vesicles: investigating their utilization as beneficial nutrients in diet. Appl Sci. 2023;13(11):6656. doi:10.3390/app13116656
  • Talebjedi B, Tasnim N, Hoorfar M, et al. Exploiting microfluidics for extracellular vesicle isolation and characterization: potential use for standardized embryo quality assessment. Front Vet Sci. 2021;7:620809. doi:10.3389/fvets.2020.620809
  • Yang M, Liu X, Luo Q, et al. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnol. 2020;18:1–12. doi:10.1186/s12951-020-00656-9
  • Yang C, Zhang W, Bai M, et al. Edible plant-derived extracellular vesicles serve as promising therapeutic systems. Nano TransMed. 2023;2(2–3):100004. doi:10.1016/j.ntm.2023.100004
  • Zhu L, Wang K, Cui J, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal. Chem. 2014;86(17):8857–8864. doi:10.1021/ac5023056
  • Saad MG, Beyenal H, Dong W-J. Exosomes as powerful engines in cancer: isolation, characterization and detection techniques. Biosensors. 2021;11(12):518. doi:10.3390/bios11120518
  • Thakur A, Johnson A, Jacobs E, et al. Energy sources for exosome communication in a cancer microenvironment. Cancers. 2022;14(7):1698. doi:10.3390/cancers14071698
  • Rajput A, Varshney A, Bajaj R, Pokharkar V. Exosomes as new generation vehicles for drug delivery: biomedical applications and future perspectives. Molecules. 2022;27(21):7289. doi:10.3390/molecules27217289
  • Singh K, Nalabotala R, Koo KM, et al. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst. 2021;146(12):3731–3749. doi:10.1039/D1AN00024A
  • Kurian TK, Banik S, Gopal D, et al. Elucidating methods for isolation and quantification of exosomes: a review. Mol Biotechnol. 2021;63:249–266. doi:10.1007/s12033-021-00300-3
  • Miron RJ, Zhang Y. Understanding exosomes: part 1—characterization, quantification and isolation techniques. Periodontology 2000. 2023;94:231–256. doi:10.1111/prd.12520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.