13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimizing lornoxicam-loaded poly(lactic-co-glycolic acid) and (polyethylene glycol) nanoparticles for transdermal delivery: ex vivo/in vivo inflammation evaluation

, ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Received 12 Feb 2024, Accepted 21 May 2024, Published online: 02 Jul 2024

References

  • Wasserman AM. Diagnosis and management of rheumatoid arthritis. Am Fam Physician. 2011;84(11):1245–1252.
  • Chaudhari K, Rizvi S, Syed BA. Rheumatoid arthritis: current and future trends. Nat Rev Drug Discov. 2016;15(5):305–306. doi:10.1038/nrd.2016.21
  • Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022;74(7):1172–1183. doi:10.1002/art.42089
  • Shakeel F, Haq N, Alanazi FK. Solubility of anti-inflammatory drug lornoxicam in ten different green solvents at different temperatures. J Mol Liq. 2015;209:280–283. doi:10.1016/j.molliq.2015.05.035
  • Noreen S, Ma J-X, Saeed M, et al. Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: a critical analysis. Drug Deliv Transl Res. 2022;12(11):2649–2666. doi:10.1007/s13346-022-01152-3
  • Benson HA, Mcildowie M, Prow T. Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement. Magnetophoresis: skin penetration enhancement by a magnetic field. Berlin, Germany:Springer; 2017. p. 195–206. doi:10.1007/978-3-662-53273-7_12
  • A Charoo N, Rahman Z, A Repka M. Electroporation: an avenue for transdermal drug delivery. Curr Drug Deliv. 2010;7(2):125–136. doi:10.2174/156720110791011765
  • Dhote V, Bhatnagar P, Mishra PK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm. 2012;80(1):1–28. doi:10.3797/scipharm.1108-20
  • Hao Y, Li W, Zhou X. Microneedles-based transdermal drug delivery systems: a review. J Biomed Nanotechnol. 2017;13(12):1581–1597. doi:10.1166/jbn.2017.2474
  • Pervaiz F, Saba A, Yasin H. Fabrication of solid lipid nanoparticles-based patches of paroxetine and their ex-vivo permeation behaviour. Artif Cells Nanomed Biotechnol. 2023;51(1):108–119. doi:10.1080/21691401.2023.2179631
  • Pervaiz F, Saleem M, Ashames A, et al. Development and ex-vivo skin permeation studies of finasteride–poly(lactic acid-co-glycolic acid) and minoxidil–chitosan nanoparticulate systems. J Bioact Compat Polym. 2020;35(2):77–91. doi:10.1177/0883911520913906
  • Takeuchi I, Tomoda K, Koji M. Hydrophilic drug-loaded PLGA nanoparticles for transdermal delivery. Colloid Polym Sci. 2017;295:977–983. doi:10.1007/s00396-017-4087-8
  • Ahmad HS, Ateeb M, Noreen S. Biomimetic synthesis and characterization of silver nanoparticles from Dipterygium glaucum extract and its anti-cancerous activities. J Mol Struct. 2023;1282:135196. doi:10.1016/j.molstruc.2023.135196
  • Umar S, Onyekachi MK. Development and evaluation of transdermal gel of Lornoxicam. Univers J Pharm Res. 2017;2(1):15–18. doi:10.22270/ujpr.v2i1.R4
  • Locatelli E, Comes Franchini M. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res. 2012;14:1–17. doi:10.1007/s11051-012-1316-4
  • Takeuchi I, Kagawa A, Makino K. Skin permeability and transdermal delivery route of 30-nm cyclosporin A-loaded nanoparticles using PLGA-PEG-PLGA triblock copolymer. Coll Surf A Physicochem Eng Asp. 2020;600:124866. doi:10.1016/j.colsurfa.2020.124866
  • Kumar L, Kukreti G, Rana R. Poly (lactic-co-glycolic) Acid (PLGA) nanoparticles and transdermal drug delivery: an overview. Curr Pharm Des. 2023;29(37):2940–2953. doi:10.2174/0113816128275385231027054743
  • Vittala Murthy NT, Paul SK, Chauhan H. Polymeric nanoparticles for transdermal delivery of polyphenols. Curr Drug Deliv. 2022;19(2):182–191. doi:10.2174/1567201818666210720144851
  • Imam SS, Gilani SJ, Zafar A. Formulation of miconazole-loaded chitosan–carbopol vesicular gel: optimization to in vitro characterization, irritation, and antifungal assessment. Pharmaceutics. 2023;15(2):581. doi:10.3390/pharmaceutics15020581
  • Jana S, Manna S, Nayak AK. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces. 2014;114:36–44. doi:10.1016/j.colsurfb.2013.09.045
  • Mosafer J, Teymouri M. Comparative study of superparamagnetic iron oxide/doxorubicin co-loaded poly (lactic-co-glycolic acid) nanospheres prepared by different emulsion solvent evaporation methods. Artif Cells Nanomed Biotechnol. 2018;46(6):1146–1155. doi:10.1080/21691401.2017.1362415
  • Sawant A, Kamath S, Kg H. Solid-in-oil-in-water emulsion: an innovative paradigm to improve drug stability and biological activity. AAPS PharmSciTech. 2021;22:1–14. doi:10.1208/s12249-021-02074-y
  • Noreen S, Pervaiz F, Ashames A, et al. Optimization of novel naproxen-loaded chitosan/carrageenan nanocarrier-based gel for topical delivery: ex vivo, histopathological, and in vivo evaluation. Pharm. 2021;14(6):557. doi:10.3390/ph14060557
  • Noreen S, Pervaiz F, Ijaz M. Synthesis and characterization of pH-sensitive chemically crosslinked block copolymer [Hyaluronic acid/Poloxamer 407-co-poly (Methacrylic acid)] hydrogels for colon targeting. Polym-Plast Tech Mat. 2022;61(10):1071–1087. doi:10.1080/25740881.2022.2033771
  • Shoukat H, Pervaiz F, Khan M, et al. Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of Rosuvastatin: an in vitro and in vivo evaluation. PLOS ONE. 2022;17(1):e0263026. doi:10.1371/journal.pone.0263026
  • Shoukat H, Pervaiz F, Noreen S. Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polym Bull. 2020;77:1869–1891. doi:10.1007/s00289-019-02837-5
  • Pervaiz F, Mushtaq R, Noreen S. Formulation and optimization of terbinafine HCl loaded chitosan/xanthan gum nanoparticles containing gel: ex-vivo permeation and in-vivo antifungal studies. JDDST. 2021;66:102935. doi:10.1016/j.jddst.2021.102935
  • Maqbool I, Akhtar M, Ahmad R, et al. Novel multiparticulate pH triggered delayed release chronotherapeutic drug delivery of celecoxib-β-cyclodextrin inclusion complexes by using Box-Behnken design. Eur J Pharm Sci. 2020;146:105254. doi:10.1016/j.ejps.2020.105254
  • Wasay SA, Jan SU, Akhtar M. Developed meloxicam loaded microparticles for colon targeted delivery: statistical optimization, physicochemical characterization, and in-vivo toxicity study. PLOS ONE. 2022;17(4):e0267306. doi:10.1371/journal.pone.0267306
  • Shrotriya S, Ranpise N, Satpute P. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif Cells Nanomed Biotechnol. 2018;46(7):1471–1482. doi:10.1080/21691401.2017.1373659
  • Üstündağ Okur N, Apaydın Ş, Karabay Yavaşoğlu NÜ. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations. Int J Pharm. 2011;416(1):136–144. doi:10.1016/j.ijpharm.2011.06.026
  • Tawfeek HM, Abdellatif AaH, Abdel-Aleem JA. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. JDDST. 2020;56:101540. doi:10.1016/j.jddst.2020.101540
  • Alotaibi BS, Pervaiz F, Buabeid M, et al. Nanostructured lipid carriers based suppository for enhanced rectal absorption of ondansetron: in vitro and in vivo evaluations. Arab J Chem. 2021;14(12):103426. doi:10.1016/j.arabjc.2021.103426
  • Zhang Z, Huang G. Intra-articular lornoxicam loaded PLGA microspheres: enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Deliv. 2012;19(5):255–263. doi:10.3109/10717544.2012.700962
  • Hamza YE-S, Aburahma MH. Design and in vitro evaluation of novel sustained-release double-layer tablets of lornoxicam: utility of cyclodextrin and xanthan gum combination. AAPS PharmSciTech. 2009;10(4):1357–1367. doi:10.1208/s12249-009-9336-9
  • Li R, Wu Y, Bai Z. Effect of molecular weight of polyethylene glycol on crystallization behaviors, thermal properties and tensile performance of polylactic acid stereocomplexes. RSC Adv. 2020;10(69):42120–42127. doi:10.1039/D0RA08699A
  • Wang Y, Li P, Kong L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech. 2013;14(2):585–592. doi:10.1208/s12249-013-9943-3
  • Corrigan OI, Li X. Quantifying drug release from PLGA nanoparticulates. Eur J Pharm Sci. 2009;37(3–4):477–485. doi:10.1016/j.ejps.2009.04.004
  • Lim C, Shin Y, Lee S, et al. Dynamic drug release state and PEG length in PEGylated liposomal formulations define the distribution and pharmacological performance of drug. JDDST. 2022;76:103825. doi:10.1016/j.jddst.2022.103825
  • Manchanda R, Fernandez-Fernandez A, Nagesetti A. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf B Biointerfaces. 2010;75(1):260–267. doi:10.1016/j.colsurfb.2009.08.043
  • Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm. 2005;290(1):137–144. doi:10.1016/j.ijpharm.2004.11.027
  • Khalil NM, Nascimento TCFD, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101:353–360. doi:10.1016/j.colsurfb.2012.06.024
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17(3):247–289. doi:10.1163/156856206775997322
  • Fonseca C, Simões S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. JCR. 2002;83(2):273–286. doi:10.1016/S0168-3659(02)00212-2
  • Hedberg EL, Tang A, Crowther RS. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. JCR. 2002;84(3):137–150. doi:10.1016/S0168-3659(02)00261-4
  • Li Y, Li M, Rantanen J. Transformation of nanoparticles into compacts: a study on PLGA and celecoxib nanoparticles. Int J Pharm. 2022;611:121278. doi:10.1016/j.ijpharm.2021.121278
  • Javadzadeh Y, Ahadi F, Davaran S. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids Surf B Biointerfaces. 2010;81(2):498–502. doi:10.1016/j.colsurfb.2010.07.047
  • Mahajan N, Sakarkar D, Manmode A. Preparation and characterization of meselamine loaded PLGA nanoparticles. Int J Pharm Pharm Sci. 2011;3(4):208–214. doi:10.1166/asl.2011.1247
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18. doi:10.1016/j.colsurfb.2009.09.001
  • Sheng J, Han L, Qin J, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–15441. doi:10.1021/acsami.5b03555
  • Ghitman J, Stan R, Ghebaur A. Novel PEG-modified hybrid PLGA-vegetable oils nanostructured carriers for improving performances of indomethacin delivery. Polymers. 2018;10(6):579. doi:10.3390/polym10060579
  • Fernandes C, Martins C, Fonseca A, et al. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl Mater Interfaces. 2018;10(46):39557–39569. doi:10.1021/acsami.8b17224
  • Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv Transl Res. 2016;6(5):511–518. doi:10.1007/s13346-016-0296-9
  • Zewail MB, Asaad GF, Swellam SM, et al. Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of Lornoxicam in experimental inflammation. Int J Pharm. 2022;624:122006. doi:10.1016/j.ijpharm.2022.122006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.