0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

RGD-modified ZIF-8 nanoparticles as a drug carrier for MR imaging and targeted drug delivery in myocardial infarction

, , , , & ORCID Icon
Received 08 Mar 2024, Accepted 04 Jun 2024, Published online: 16 Jul 2024

References

  • Messadi E. Snake venom components as therapeutic drugs in ischemic heart disease. Biomolecules. 2023;13(10):1539. doi:10.3390/biom13101539
  • Mahrholdt H, Wagner A, Geissler A, et al. Diagnosis of myocardial infarction and myocardial viability using contrast-enhanced magnetic resonance imaging. Dtsch Med Wochenschr. 2002;127(23):1264–1271. doi:10.1055/s-2002-32103
  • Wang X, Pu J. Recent advances in cardiac magnetic resonance for imaging of acute myocardial infarction. Small Methods. 2024;8(3):e2301170. doi:10.1002/smtd.202301170
  • Vidal-Perez R, Brandao M, Zaher W, et al. Value of cardiac magnetic resonance on the risk stratification of cardiomyopathies. World J Cardiol. 2023;15(10):487–499. doi:10.4330/wjc.v15.i10.487
  • Adhaduk M, Paudel B, Liu K, et al. Comparison of cardiac magnetic resonance imaging and fluorodeoxyglucose positron emission tomography in the assessment of myocardial viability: meta-analysis and systematic review. J Nucl Cardiol. 2023;30(4):1574–1587. doi:10.1007/s12350-022-03129-8
  • Beijnink CWH, Van Der Hoeven NW, Konijnenberg LSF, et al. Cardiac MRI to visualize myocardial damage after ST-segment elevation myocardial infarction: a review of its histologic validation. Radiology 2021;301(1):4–18. doi:10.1148/radiol.2021204265
  • Blomqvist L, Nordberg GF, Nurchi VM, et al. Gadolinium in medical imaging-usefulness, toxic reactions and possible countermeasures-a review. Biomolecules. 2022;12(6):742. doi:10.3390/biom12060742
  • Oluwasola IE, Ahmad AL, Shoparwe NF, et al. Gadolinium based contrast agents (GBCAs): uniqueness, aquatic toxicity concerns, and prospective remediation. J Contam Hydrol. 2022;250:104057. doi:10.1016/j.jconhyd.2022.104057
  • Pei Y, Miu M, Mao X, et al. Alpha-Klotho: an early risk-predictive biomarker for acute kidney injury in patients with acute myocardial infarction. Inter J Clin Practice. 2023;2023:8244545.
  • Du F, Zhang L, Zhang L, et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials. 2017;121:109–120. doi:10.1016/j.biomaterials.2016.07.008
  • Chen H, Wang GD, Tang W, et al. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Advan Mater. 2014;26(39):6761–6766. doi:10.1002/adma.201402964
  • Hajfathalian M, Mossburg KJ, Radaic A, et al. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024;16(3):e1959. doi:10.1002/wnan.1959
  • Xu X, Min H, Li Y. Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions. Anal Methods. 2023;15(43):5731–5753. doi:10.1039/D3AY01318A
  • Zhu P, Wang S, Zhang Y, et al. Carbon dots in biomedicine: a review. ACS Appl Bio Mater. 2022;5(5):2031–2045. doi:10.1021/acsabm.1c01215
  • Marquis-Gravel G, Zeitouni M, Kochar A, et al. Technical consideration in acute myocardial infarction with cardiogenic shock: a review of antithrombotic and PCI therapies. Catheter Cardiovasc Interv. 2020;95(5):924–931. doi:10.1002/ccd.28455
  • Algoet M, Janssens S, Himmelreich U, et al. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2023;33(6):357–366. doi:10.1016/j.tcm.2022.02.005
  • Liu CJ, Yao L, Hu YM, et al. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomedicine. 2021;16:741–752. doi:10.2147/IJN.S277377
  • Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-alpha induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore). 2020;99(38):e22241. doi:10.1097/MD.0000000000022241
  • Vinayak M, Maurya AK. Quercetin loaded nanoparticles in targeting cancer: recent development. Anticancer Agents Med Chem. 2019;19(13):1560–1576. doi:10.2174/1871520619666190705150214
  • Mckay TB, Emmitte KA, German C, et al. Quercetin and related analogs as therapeutics to promote tissue repair. Bioengineering (Basel). 2023;10(10):1127. doi:10.3390/bioengineering10101127
  • Kim D, Ku SH, Kim H, et al. Simultaneous regulation of apoptotic gene silencing and angiogenic gene expression for myocardial infarction therapy: single-carrier delivery of SHP-1 siRNA and VEGF-expressing pDNA. J Control Rel. 2016;243:182–194. doi:10.1016/j.jconrel.2016.10.017
  • Wang C, Nistala R, Cao M, et al. Repair of limb ischemia is dependent on hematopoietic stem cell specific-SHP-1 regulation of TGF-beta1. Arterioscler Thromb Vasc Biol. 2023;43(1):92–108. doi:10.1161/ATVBAHA.122.318205
  • Somasuntharam I, Boopathy AV, Khan RS, et al. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials. 2013;34(31):7790–7798. doi:10.1016/j.biomaterials.2013.06.051
  • Li CX, Parker A, Menocal E, et al. Delivery of RNA interference. Cell Cycle. 2006;5(18):2103–2109. doi:10.4161/cc.5.18.3192
  • Abdelhamid HN, Dowaidar M, Langel U. Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery. Microporous Mesoporous Mater. 2020;302:110200. doi:10.1016/j.micromeso.2020.110200
  • Abdelhamid HN, Dowaidar M, Hällbrink M, et al. Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous Mesoporous Mater. 2020;300:110173. doi:10.1016/j.micromeso.2020.110173
  • Hu S, Yan C, Fei Q, et al. MOF-based stimuli-responsive controlled release nanopesticide: mini review. Front Chem. 2023;11:1272725. doi:10.3389/fchem.2023.1272725
  • Oryani MA, Nosrati S, Javid H, et al. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. Naunyn Schmiedebergs Arch Pharmacol. 2023;397(3):1377–1404. doi:10.1007/s00210-023-02707-y
  • Saeinasab M, Iranpour S, Hosseini-Giv N, et al. Tumor-targeted delivery of SNHG15 siRNA using a ZIF-8 nanoplatform: towards a more effective prostate cancer therapy. Int J Biol Macromol. 2024;259(Pt 1):129233. doi:10.1016/j.ijbiomac.2024.129233
  • Xie H, Liu X, Huang Z, et al. Nanoscale Zeolitic Imidazolate Framework (ZIF)-8 in cancer theranostics: current challenges and prospects. Cancers (Basel). 2022;14(16):3935. doi:10.3390/cancers14163935
  • Li Y, Li B, Wang X, et al. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots. Nanomedicine (Lond). 2020;15(24):2385–2398. doi:10.2217/nnm-2020-0160
  • Jiang W, Zhang H, Wu J, et al. CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy. ACS Appl Mater Interfaces. 2018;10(40):34513–34523. doi:10.1021/acsami.8b13487
  • Bentsen S, Jensen JK, Christensen E, et al. [(68)Ga]Ga-NODAGA-E[(cRGDyK)](2) angiogenesis PET following myocardial infarction in an experimental rat model predicts cardiac functional parameters and development of heart failure. J Nucl Cardiol. 2023;30(5):2073–2084. doi:10.1007/s12350-023-03265-9
  • Dietz M, Kamani CH, Dunet V, et al. Overview of the RGD-based PET agents use in patients with cardiovascular diseases: a systematic review. Front Med (Lausanne). 2022;9:887508. doi:10.3389/fmed.2022.887508
  • Hsieh YK, Wang MT, Wang CY, et al. Recent advances in the diagnosis and management of acute myocardial infarction. J Chin Med Assoc. 2023;86(11):950–959. doi:10.1097/JCMA.0000000000001001
  • Yamase T, Taki J, Wakabayashi H, et al. Feasibility of (125)I-RGD uptake as a marker of angiogenesis after myocardial infarction. Ann Nucl Med. 2022;36(3):235–243. doi:10.1007/s12149-021-01695-4
  • Ragelle H, Colombo S, Pourcelle V, et al. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles: a mechanistic insight. J Control Rel. 2015;211:1–9. doi:10.1016/j.jconrel.2015.05.274
  • Schlosser T, Hunold P, Herborn CU, et al. Myocardial infarct: depiction with contrast-enhanced MR imaging--comparison of gadopentetate and gadobenate. Radiology. 2005;236(3):1041–1046. doi:10.1148/radiol.2363040220
  • Paulis LE, Geelen T, Kuhlmann MT, et al. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J Control Rel. 2012;162(2):276–285. doi:10.1016/j.jconrel.2012.06.035
  • Rao MRP, Godbole RV, Borate SG, et al. Nanosuspension coated multiparticulates for controlled delivery of albendazole. Drug Dev Ind Pharm. 2021;47(3):367–376. doi:10.1080/03639045.2021.1879830
  • Dashti N, Akbari V, Varshosaz J, et al. Co-delivery of carboplatin and doxorubicin using ZIF-8 coated chitosan-poly(N-isopropyl acrylamide) nanoparticles through a dual pH/thermo responsive strategy to breast cancer cells. Int J Biol Macromol. 2024;269(Pt 1):131971. doi:10.1016/j.ijbiomac.2024.131971
  • Lundy DJ, Chen KH, Toh EK, et al. Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. Sci Rep. 2016;6:25613. doi:10.1038/srep25613
  • Higuchi T, Bengel FM, Seidl S, et al. Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res. 2008;78(2):395–403. doi:10.1093/cvr/cvn033
  • Lang CI, Doring P, Gabel R, et al. [(68)Ga]-NODAGA-RGD positron emission tomography (PET) for assessment of post myocardial infarction angiogenesis as a predictor for left ventricular remodeling in mice after cardiac stem cell therapy. Cells. 2020;9(6):1358. doi:10.3390/cells9061358
  • Kinaci MK, Erkasap N, Kucuk A, et al. Effects of quercetin on apoptosis, NF-kappaB and NOS gene expression in renal ischemia/reperfusion injury. Exp Ther Med. 2012;3(2):249–254. doi:10.3892/etm.2011.382
  • Zhu Y, Chai Y, Su Z, et al. Danlou tablet protects against myocardial infarction through promoting eNOS-dependent endothelial protection and angiogenesis. J Cardiovasc Transl Res. 2023;17(2):403–416. doi:10.1007/s12265-023-10437-y
  • Liu K, Yan X, Xu YJ, et al. Sequential growth of CaF(2):Yb,Er@CaF(2):Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis. Biomater Sci. 2017;5(12):2403–2415. doi:10.1039/C7BM00797C
  • Xu D, Gao LN, Song XJ, et al. Enhanced antidepressant effects of BDNF-quercetin alginate nanogels for depression therapy. J Nanobiotechnology. 2023;21(1):379. doi:10.1186/s12951-023-02150-4
  • Chen Y, Xia G, Wang C, et al. Impact of dietary plant flavonoids on 7,8-dihydroxyflavone transepithelial transport in human intestinal Caco-2 cells. Food Sci Nutr. 2023;11(11):6888–6898. doi:10.1002/fsn3.3581
  • Hernandez-Resendiz S, Munoz-Vega M, Contreras WE, et al. Responses of endothelial cells towards ischemic conditioning following acute myocardial infarction. Cond Med. 2018;1(5):247–258.
  • Kim D, Hong J, Moon HH, et al. Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia-reperfusion injury: use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier. J Control Rel. 2013;168(2):125–134. doi:10.1016/j.jconrel.2013.02.031
  • Liu D, Luo H, Qiao C. SHP-1/STAT3 interaction is related to luteolin-induced myocardial ischemia protection. Inflammation. 2022;45(1):88–99. doi:10.1007/s10753-021-01530-y
  • Yang GL, Zhao Z, Qin TT, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31(5):2001–2012. doi:10.1096/fj.201600800R
  • Sullivan HL, Gianneschi NC, Christman KL. Targeted nanoscale therapeutics for myocardial infarction. Biomater Sci. 2021;9(4):1204–1216. doi:10.1039/D0BM01677B
  • Magadum A, Kaur K, Zangi L. mRNA-based protein replacement therapy for the heart. Mol Ther. 2019;27(4):785–793. doi:10.1016/j.ymthe.2018.11.018
  • Ibrahim MA, Hazhirkarzar B, Dublin AB. Gadolinium magnetic resonance imaging. In: StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Bita Hazhirkarzar declares no relevant financial relationships with ineligible companies. Disclosure: Arthur Dublin declares no relevant financial relationships with ineligible companies. (2023).
  • Zhang H, Wang T, Zheng Y, et al. Comparative toxicity and contrast enhancing assessments of Gd(2)O(3)@BSA and MnO(2)@BSA nanoparticles for MR imaging of brain glioma. Biochem Biophys Res Commun. 2018;499(3):488–492. doi:10.1016/j.bbrc.2018.03.175
  • Nguyen MM, Carlini AS, Chien MP, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater. 2015;27(37):5547–5552. doi:10.1002/adma.201502003
  • Rocker AJ, Lee DJ, Shandas R, et al. Injectable polymeric delivery system for spatiotemporal and sequential release of therapeutic proteins to promote therapeutic angiogenesis and reduce inflammation. ACS Biomater Sci Eng. 2020;6(2):1217–1227. doi:10.1021/acsbiomaterials.9b01758
  • Itzhar A, Yosef G, Eilon-Ashkenazy M, et al. Potent inhibition of MMP-9 by a novel sustained-release platform attenuates left ventricular remodeling following myocardial infarction. J Control Release. 2023;364:246–260. doi:10.1016/j.jconrel.2023.10.033
  • Moyon A, Garrigue P, Fernandez S, et al. Comparison of a new (68)Ga-radiolabelled PET imaging agent sCD146 and RGD peptide for in vivo evaluation of angiogenesis in mouse model of myocardial infarction. Cells. 2021;10(9):2305. doi:10.3390/cells10092305
  • Dong Z, Guo J, Xing X, et al. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother. 2017;89:297–304. doi:10.1016/j.biopha.2017.02.029
  • Kanda M, Nagai T, Kondo N, et al. Pericardial grafting of cardiac progenitor cells in self-assembling peptide scaffold improves cardiac function after myocardial infarction. Cell Transplant. 2023;32:9636897231174078. doi:10.1177/09636897231174078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.