0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mesoporous zinc-polyphenol nanozyme for attenuating renal ischemia–reperfusion injury

, , , , , , , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Received 22 May 2024, Accepted 17 Jul 2024, Published online: 08 Aug 2024

References

  • Kellum JA, Romagnani P, Ashuntantang G, et al. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52. doi:10.1038/s41572-021-00284-z
  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–1964. doi:10.1016/S0140-6736(19)32563-2
  • Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–766. doi:10.1016/S0140-6736(11)61454-2
  • Zarbock A, Forni LG, Ostermann M, et al. Designing acute kidney injury clinical trials. Nat Rev Nephrol. 2024;20(2):137–146. doi:10.1038/s41581-023-00758-1
  • Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair. J Clin Med. 2020;9(1):253. doi:10.3390/jcm9010253
  • Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy. 2023;19(2):401–414. doi:10.1080/15548627.2022.2084862
  • Feng S, Qu Y, Chu B, et al. Novel gold-platinum nanoparticles serve as broad-spectrum antioxidants for attenuating ischemia reperfusion injury of the kidney. Kidney Int. 2022;102(5):1057–1072. doi:10.1016/j.kint.2022.07.004
  • Yan J, Wang Y, Zhang J, et al. Rapidly blocking the calcium overload/ROS production feedback loop to alleviate acute kidney injury via microenvironment-responsive BAPTA-AM/BAC co-delivery nanosystem. Small. 2023;19(17):2206936. doi:10.1002/smll.202206936
  • Zhang J, Pan W, Zhang Y, et al. Comprehensive overview of Nrf2-related epigenetic regulations involved in ischemia-reperfusion injury. Theranostics. 2022;12(15):6626. doi:10.7150/thno.77243
  • Jin J, Zhou T-J, Ren G-L, et al. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin. 2022;43(11):2789–2806. doi:10.1038/s41401-022-00886-7
  • Thomas K, Zondler L, Ludwig N, et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. JCI Insight. 2022;7(21):e163161. doi:10.1172/jci.insight.163161
  • Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 2023;19(5):281–299. doi:10.1038/s41581-023-00694-0
  • Xia K, Qiu T, Jian Y, et al. Degradation of histone deacetylase 6 alleviates ROS-mediated apoptosis in renal ischemia-reperfusion injury. Biomed. Pharmacother. 2023;165:115128. doi:10.1016/j.biopha.2023.115128
  • Ye Y, Chen Y, Wu H, et al. Investigations into ferroptosis in methylmercury-induced acute kidney injury in mice. Environ Toxicol. 2023;38(6):1372–1383. doi:10.1002/tox.23770
  • Xu M, Zhao M, Zheng D. Effect of IGF-1C domain-modified nanoparticles on renal ischemia-reperfusion injury in mice. Ren. Fail. 2022;44(1):1377–1388. doi:10.1080/0886022X.2022.2098773
  • Chen Q, Nan Y, Yang Y, et al. Nanodrugs alleviate acute kidney injury: manipulate RONS at kidney. Bioact Mater. 2023;22:141–167. doi:10.1016/j.bioactmat.2022.09.021
  • Stone JP, D'Arcy R, Geraghty A, et al. Polysulfide nanoparticles ameliorate ischaemia reperfusion injury in renal transplantation and improve kidney function post-transplantation. bioRxiv. 2023. doi:10.1101/2023.06.21.545864
  • Huang Q, Yang Y, Zhao T, et al. Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment. Bioact Mater. 2023;21:381–393. doi:10.1016/j.bioactmat.2022.08.022
  • Li N, Wang Y, Wang X, et al. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol. Res. 2022;175:106033. doi:10.1016/j.phrs.2021.106033
  • Cooper M, Wiseman AC, Doshi MD, et al. Understanding delayed graft function to improve organ utilization and patient outcomes: report of a scientific workshop sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 2023;83(3):360–369. doi:10.1053/j.ajkd.2023.08.018
  • Shi L, Song Z, Li Y, et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am J Transplantation. 2023;23(1):11–25. doi:10.1016/j.ajt.2022.09.003
  • Duan R, Li Y, Zhang R, et al. Reversing acute kidney injury through coordinated interplay of anti-inflammation and iron supplementation. Adv Mater. 2023;35(28):e2301283. doi:10.1002/adma.202301283
  • Wang Y, Jiang H, Zhang L, et al. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol. 2023;11:1120148. doi:10.3389/fbioe.2023.1120148
  • Wang S, Chen Y, Han S, et al. Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway. Theranostics. 2022;12(8):3882. doi:10.7150/thno.70830
  • Zhang W, Roy S, Ezati P, et al. Tannic acid: a green crosslinker for biopolymer-based food packaging films. Trends Food Sci Technol. 2023;136(24):11–23. doi:10.1016/j.tifs.2023.04.004
  • Duda-Chodak A, Tarko T. Possible side effects of polyphenols and their interactions with medicines. Molecules. 2023;28(6):2536. doi:10.3390/molecules28062536
  • Qi C, Liu G, Ping Y, et al. A comprehensive review of nano-delivery system for tea polyphenols: construction, applications, and challenges. Food Chem X. 2023;17:100571. doi:10.1016/j.fochx.2023.100571
  • Jia W, Zhou L, Li L, et al. Nano-based drug delivery of polyphenolic compounds for cancer treatment: progress, opportunities, and challenges. Pharmaceuticals. 2023;16(1):101. doi:10.3390/ph16010101
  • Feng Y, Li P, Wei J. Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coord Chem Rev. 2022;468:214649. doi:10.1016/j.ccr.2022.214649
  • Zheng D, Liu J, Piao H, et al. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022;13:1039241. doi:10.3389/fimmu.2022.1039241
  • Wang B, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol. 2023;97(6):1439–1451. doi:10.1007/s00204-023-03476-6
  • Wei H, Jiang D, Yu B, et al. Nanostructured polyvinylpyrrolidone-curcumin conjugates allowed for kidney-targeted treatment of cisplatin induced acute kidney injury. Bioact Mater. 2023;19:282–291. doi:10.1016/j.bioactmat.2022.04.006
  • Wu M, Lu L, Li J, et al. Bioinspired multiantioxidant-cooperative nanotheranostic platform for realizing time-sensitive management of acute kidney injury. Adv Funct Mater. 2023;33(40):2301664. doi:10.1002/adfm.202301664
  • Liu W, Hu C, Zhang B, et al. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9. Biol Proced Online. 2023;25(1):1–19. doi:10.1186/s12575-023-00198-y
  • Deng Z, He M, Hu H, et al. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy. 2023;20(1):151–165. doi:10.1080/15548627.2023.2252265
  • Akbari G. Role of zinc supplementation on ischemia/reperfusion injury in various organs. Biol Trace Elem Res. 2020;196(1):1–9. doi:10.1007/s12011-019-01892-3
  • Xia W, Li C, Zhao D, et al. The impact of zinc supplementation on critically ill patients with acute kidney injury: a propensity score matching analysis. Front Nutr. 2022;9:894572. doi:10.3389/fnut.2022.894572
  • O'Kane D, Du Plessis J, Baldwin G, et al. MP70-11 ZINC PRECONDITIONING PROTECTS THE KIDNEY AGAINST ISCHAEMIA-REPERFUSION INJURY. J Urol. 2019;201(Suppl. 4):e1042–e1042.
  • O'Kane D, Gibson L, May CN, et al. Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. Biometals. 2018;31:821–834. doi:10.1007/s10534-018-0125-3
  • Xu Y, Li A, Li X, et al. Zinc deficiency induces inflammation and apoptosis via oxidative stress in the kidneys of mice. Biol Trace Elem Res. 2023;201(2):739–750. doi:10.1007/s12011-022-03166-x
  • Huber KL, Hardy JA. Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci. 2012;21(7):1056–1065.
  • Famurewa AC, Edeogu C, Offor FI, et al. Downregulation of redox imbalance and iNOS/NF-κB/caspase-3 signalling with zinc supplementation prevents urotoxicity of cyclophosphamide-induced hemorrhagic cystitis in rats. Life Sci. 2021;266:118913.
  • Velázquez-Delgado EM, Hardy JA. Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem. 2012;287(43):36000–36011.
  • Daniel AG, Peterson EJ, Farrell NP. The bioinorganic chemistry of apoptosis: potential inhibitory zinc binding sites in caspase-3. Angew Chem. 2014;126(16):4182–4185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.