Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 116, 2017 - Issue 1
20,727
Views
323
CrossRef citations to date
0
Altmetric
Original Articles

Review of flash sintering: materials, mechanisms and modelling

, , , &
Pages 24-60 | Received 15 Jun 2016, Accepted 02 Oct 2016, Published online: 09 Dec 2016

References

  • Orrù R, Licheri R, Locci AM, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep. 2009;63(4–6):127–287. doi: 10.1016/j.mser.2008.09.003
  • Grasso S, Sakka Y, Maizza G. Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mater. 2009;10(5):053001. doi: 10.1088/1468-6996/10/5/053001
  • Fais A, Grande MA, Forno I. Influence of processing parameters on the mechanical properties of Electro-Sinter-Forged iron based powders. Mater Des. 2016;93:458–466.
  • Raj R, Cologna M, Francis JSC. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc. 2011;94(7):1941–1965. doi: 10.1111/j.1551-2916.2011.04652.x
  • Cologna M, Rashkova B, Raj R. Flash Sintering of Nanograin Zirconia in <5 s at 850°C. J Am Ceram Soc. 2010;93(11):3556–3559. doi: 10.1111/j.1551-2916.2010.04089.x
  • German RM. History of sintering: empirical phase. Powder Metall. 2013;56(2):117–123. doi: 10.1179/1743290112Y.0000000025
  • Heerding A. The history of NV philips’ Gloeilampenfabrieken: Vol. 2, A company of many parts. Eindhoven: CUP Archive; 1988.
  • Coblentz WW. Selective radiation from various solids II. Bull Bur Stand. 1910;6:301–319. doi: 10.6028/bulletin.143
  • Hill M, Taylor M, Mikhalapov G, et al. Production of cermets by flash sintering process. Summary Report from October 1, 1950 through March 31, 1952, Washington (DC), Metallurgical Research and Development Co., Inc. Patterson (NJ): SKC Research Associates; 1952.
  • Storchheim S. Flash sintering. United States patent US 3,294,530; 1966.
  • Perelaer J, Klokkenburg M, Hendriks CE, et al. Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv Mater. 2009;21(47):4830–4834. doi: 10.1002/adma.200901081
  • Raj R, Cologna M, Prette ALG, et al. Methods of flash sintering. Patent application US 13/562,040; 2013.
  • Todd R, Zapata-Solvas E, Bonilla R, et al. Electrical characteristics of flash sintering: thermal runaway of Joule heating. J Eur Ceram Soc. 2015;35(6):1865–1877. doi: 10.1016/j.jeurceramsoc.2014.12.022
  • Nernst W. German patent DRP 104872; 1897.
  • Smith HM. The nernst lamp. Science. 1898;8:689–690. doi: 10.1126/science.8.203.689
  • Olevsky E, Aleksandrova E, Ilyina A, et al. Outside mainstream electronic databases: review of studies conducted in the USSR and post-soviet countries on electric current-assisted consolidation of powder materials. Materials. 2013;6(10):4375–4440. doi: 10.3390/ma6104375
  • Kotov YA. Electric explosion of wires as a method for preparation of nanopowders. J Nanopart Res. 2003;5(5–6):539–550. doi: 10.1023/B:NANO.0000006069.45073.0b
  • Vaidhyanathan B. AMPERE newslett. Trends RF Microwave Heat. 2016;88:14.
  • Raj R. Joule heating during flash-sintering. J Eur Ceram Soc. 2012;32(10):2293–2301. doi: 10.1016/j.jeurceramsoc.2012.02.030
  • Matsumura T. The electrical properties of alumina at high temperatures. Can J Phys. 1966;44(8):1685–1698. doi: 10.1139/p66-143
  • Kiessling R. Bonding in metals. Metall Rev. 1957;2(1):77–107. doi: 10.1179/095066057790149868
  • DeSilva A, Katsouros J. Electrical conductivity of dense copper and aluminum plasmas. Phys Rev E. 1998;57(5):5945–5951. doi: 10.1103/PhysRevE.57.5945
  • Werheit H. Thermoelectric properties of boron-rich solids and their possibilities of technical application. 25th International Conference on Thermoelectrics ICT’06. IEEE; 2006. p. 159–163.
  • Avrov DD, Bakin AS, Dorozhkin SI, et al. Electrical conductivity of single-crystalline bulk 6H-SiC and epitaxial layers of AIN in the temperature range 300–2300 K. Mater Sci Forum. 1998;264:521–524.
  • Malavasi L, Fisher CA, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39(11):4370–4387. doi: 10.1039/b915141a
  • Guo X. Insulator-to-semiconductor transition of nanocrystalline BaTiO3 at temperatures ≤ 200°C. Phys Chem Chem Phys. 2014;16(38):20420–20423. doi: 10.1039/C4CP01914H
  • Pappis J, Kingery WD. Electrical properties of single-crystal and polycrystalline alumina at high temperatures. J Am Ceram Soc. 1961;44(9):459–464. doi: 10.1111/j.1151-2916.1961.tb13756.x
  • Belashchenko KD, Van Schilfgaarde M, Antropov V. Coexistence of covalent and metallic bonding in the boron intercalation superconductor MgB2. Phys Rev B. 2001;64(9):092503. doi: 10.1103/PhysRevB.64.092503
  • Suzuki T., Kosacki I, Anderson HU, et al. Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J Am Ceram Soc. 2001;84(9):2007–2014. doi: 10.1111/j.1151-2916.2001.tb00950.x
  • Neusel C, Jelitto H, Schneider GA. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown. J Appl Phys. 2015;117(15):154902. doi: 10.1063/1.4917208
  • Marley PM, Horrocks GA, Pelcher KE, et al. Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chem Commun. 2015;51(25):5181–5198. doi: 10.1039/C4CC08673B
  • Niu B, Zhang F, Zhang JY, et al. Ultra-fast densification of boron carbide by flash spark plasma sintering. Scr Mater. 2016;116:127–130. doi: 10.1016/j.scriptamat.2016.02.012
  • Cologna M, Francis JS, Raj R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc. 2011;31(15):2827–2837. doi: 10.1016/j.jeurceramsoc.2011.07.004
  • Caliman L, Bichaud E, Soudant P, et al. A simple flash sintering setup under applied mechanical stress and controlled atmosphere. MethodsX. 2015;2:392–398. doi: 10.1016/j.mex.2015.10.004
  • Grasso S, Saunders T, Porwal H, et al. Flash spark plasma sintering (FSPS) of pure ZrB2. J Am Ceram Soc. 2014;97(8):2405–2408. doi: 10.1111/jace.13109
  • Saunders T, Grasso S, Reece MJ. Ultrafast-contactless flash sintering using plasma electrodes. Sci Rep. 2016;6:27222. doi: 10.1038/srep27222
  • Prette AL, Cologna M, Sglavo V, et al. Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sour. 2011;196(4):2061–2065. doi: 10.1016/j.jpowsour.2010.10.036
  • Downs JA, Sglavo VM. Electric field assisted sintering of cubic zirconia at 390°C. J Am Ceram Soc. 2013;96(5):1342–1344. doi: 10.1111/jace.12281
  • Lebrun JM, Morrissey TG, Francis JS, et al. Emergence and extinction of a new phase during on–off experiments related to flash sintering of 3YSZ. J Am Ceram Soc. 2015;98(5):1493–1497. doi: 10.1111/jace.13476
  • Jha S, Lebrun J, Seymour K, et al. Electric field induced texture in titania during experiments related to flash sintering. J Eur Ceram Soc. 2016;36(1):257–261. doi: 10.1016/j.jeurceramsoc.2015.09.002
  • Schmerbauch C, Gonzalez-Julian J, Röder R, et al. Flash sintering of nanocrystalline zinc oxide and its influence on microstructure and defect formation. J Am Ceram Soc. 2014;97(6):1728–1735. doi: 10.1111/jace.12972
  • Francis JS, Raj R. Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity. J Am Ceram Soc. 2012;95(1):138–146. doi: 10.1111/j.1551-2916.2011.04855.x
  • Grasso S, Kim E-Y, Saunders T, et al. Ultra-rapid crystal growth of textured SiC using flash spark plasma sintering route. Cryst Growth Des. 2016;16(4):2317–2321. doi: 10.1021/acs.cgd.6b00099
  • Hunt AT, Johnson S, Venugopal G. Flame-assisted flash sintering. United States patent appl/US 20150191827; 2015.
  • Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, et al. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep. 2015;5:8513. doi: 10.1038/srep08513
  • Vasylkiv O, Borodianska H, Sakka Y, et al. Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics. Scr Mater. 2016;121:32–36. doi: 10.1016/j.scriptamat.2016.04.031
  • Yoshida H, Sakka Y, Yamamoto T, et al. Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. J Eur Ceram Soc. 2014;34(4):991–1000. doi: 10.1016/j.jeurceramsoc.2013.10.031
  • Karakuscu A, Cologna M, Yarotski D, et al. Defect structure of flash-sintered strontium titanate. J Am Ceram Soc. 2012;95(8):2531–2536. doi: 10.1111/j.1551-2916.2012.05240.x
  • Francis JS, Cologna M, Montinaro D, et al. Flash sintering of anode-electrolyte multilayers for SOFC applications. J Am Ceram Soc. 2013;96(5):1352–1354. doi: 10.1111/jace.12330
  • Muccillo R, Muccillo E. An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J Eur Ceram Soc. 2013;33(3):515–520. doi: 10.1016/j.jeurceramsoc.2012.09.020
  • Lebrun JM, Raj R. A first report of photoemission in experiments related to flash sintering. J Am Ceram Soc. 2014;97(8):2427–2430. doi: 10.1111/jace.13130
  • Gaur A, Sglavo VM. Flash sintering of (La, Sr)(Co, Fe)O3–Gd-Doped CeO2 composite. J Am Ceram Soc. 2015;98(6):1747–1752. doi: 10.1111/jace.13532
  • Biesuz M, Sglavo VM. Flash sintering of alumina: Effect of different operating conditions on densification. J Eur Ceram Soc. 2016;36(10):2535–2542. doi: 10.1016/j.jeurceramsoc.2016.03.021
  • Francis JSC. A study on the phenomena of flash-sintering with tetragonal zirconia. Boulder: University of Colorado at Boulder; 2013.
  • Badica P, Crisan A, Aldica G, et al. ‘Beautiful’ unconventional synthesis and processing technologies of superconductors and some other materials. Sci Technol Adv Mater. 2011;12(1):013001. doi: 10.1088/1468-6996/12/1/013001
  • Zhang Y, Jung J-I, Luo J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO–Bi2O3 under direct currents. Acta Mater. 2015;94:87–100. doi: 10.1016/j.actamat.2015.04.018
  • Steil MC, Marinha D, Aman Y, et al. From conventional ac flash-sintering of YSZ to hyper-flash and double flash. J Eur Ceram Soc. 2013;33(11):2093–2101. doi: 10.1016/j.jeurceramsoc.2013.03.019
  • Muccillo R, Muccillo E. Electric field-assisted flash sintering of tin dioxide. J Eur Ceram Soc. 2014;34(4):915–923. doi: 10.1016/j.jeurceramsoc.2013.09.017
  • Lisenker I, Stoldt CR. Improving NASICON sinterability through crystallization under high-frequency electrical fields. Front Energy Res. 2016;4:2587. doi: 10.3389/fenrg.2016.00013
  • Gittings JP, Bowen CR, Dent ACE, et al. Electrical characterization of hydroxyapatite-based bioceramics. Acta BioMater. 2009;5(2):743–754. doi: 10.1016/j.actbio.2008.08.012
  • Grasso S, Saunders T, Porwal H, et al. Flash Spark Plasma Sintering (FSPS) of α and β SiC. J Am Ceram Soc. 2016;99(5):1534–1543. doi: 10.1111/jace.14158
  • Lebrun J-M, Jha SK, McCormack SJ, et al. Broadening of diffraction peak widths and temperature nonuniformity during flash experiments. J Am Ceram Soc. 2016;99(10):3429–3434. doi: 10.1111/jace.14326
  • Naik KS, Sglavo VM, Raj R. Field assisted sintering of ceramic constituted by alumina and yttria stabilized zirconia. J Eur Ceram Soc. 2014;34(10):2435–2442. doi: 10.1016/j.jeurceramsoc.2014.02.042
  • Thomas RA. The thermography monitoring handbook. Chipping Norton, UK: Coxmoor Publishing; 1999.
  • Huang PY, Ruiz-Vargas CS, van der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469(7330):389–392. doi: 10.1038/nature09718
  • Cologna M, Prette AL, Raj R. Flash-sintering of cubic yttria-stabilized zirconia at 750°C for possible use in SOFC manufacturing. J Am Ceram Soc. 2011;94(2):316–319. doi: 10.1111/j.1551-2916.2010.04267.x
  • Grasso S, Sakka Y, Rendtorff N, et al. Modeling of the temperature distribution of flash sintered zirconia. J Ceram Soc Japan. 2011;119(1386):144–146. doi: 10.2109/jcersj2.119.144
  • Saunders T, Grasso S, Reece MJ. Plasma formation during electric discharge (50V) through conductive powder compacts. J Eur Ceram Soc. 2015;35(3):871–877. doi: 10.1016/j.jeurceramsoc.2014.09.022
  • Park J, Chen IW. In situ thermometry measuring temperature flashes exceeding 1,700°C in 8 mol% Y2 O3-stablized zirconia under constant-voltage heating. J Am Ceram Soc. 2013;96(3):697–700. doi: 10.1111/jace.12176
  • M’Peko JC, Francis J, Raj R. Impedance spectroscopy and dielectric properties of flash versus conventionally sintered yttria-doped zirconia electroceramics viewed at the microstructural level. J Am Ceram Soc. 2013;96(12):3760–3767. doi: 10.1111/jace.12567
  • Terauds K, Lebrun J-M, Lee H-H, et al. Electroluminescence and the measurement of temperature during Stage III of flash sintering experiments. J Eur Ceram Soc. 2015;35(11):3195–3199. doi: 10.1016/j.jeurceramsoc.2015.03.040
  • Vij DR. Handbook of electroluminescent materials. Stroud: Taylor & Francis; 2004.
  • Mueller G. Electroluminescence I. London: Academic Press; 2000.
  • Qin W, Majidi H, Yun J, et al. Electrode effects on microstructure formation during FLASH sintering of Yttrium-stabilized Zirconia. J Am Ceram Soc. 2016;99(7):2253–2259. doi: 10.1111/jace.14234
  • Muccillo R, Kleitz M, Muccillo ENS. Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc. 2011;31(8):1517–1521. doi: 10.1016/j.jeurceramsoc.2011.02.030
  • Jiang T, Wang Z, Zhang J, et al. Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J Am Ceram Soc. 2015;98:1717–1723. doi: 10.1111/jace.13526
  • Uehashi A, Sasaki K, Tokunaga T, et al. Formation of secondary phase at grain boundary of flash-sintered BaTiO3. Microscopy (Oxford, England). 2014;63:i19–i20.
  • Shomrat N, Baltianski S, Randall CA, et al. Flash sintering of potassium-niobate. J Eur Ceram Soc. 2015;35(7):2209–2213. doi: 10.1016/j.jeurceramsoc.2015.01.017
  • Zhang Y, Nie J, Luo J. Effects of phase and doping on flash sintering of TiO2. J Ceram Soc Japan. 2016;124(4):296–300. doi: 10.2109/jcersj2.15255
  • Zapata-Solvas E, Bonilla S, Wilshaw PR, et al. Preliminary investigation of flash sintering of SiC. J Eur Ceram Soc. 2013;33(13–14):2811–2816. doi: 10.1016/j.jeurceramsoc.2013.04.023
  • Cabouro G, Le Gallet S, Chevalier S, et al. Dense Mosi2 produced by reactive flash sintering: control of Mo/Si agglomerates prepared by high-energy ball milling. Powder Technol. 2011;208(2):526–531. doi: 10.1016/j.powtec.2010.08.054
  • Francis JS, Cologna M, Raj R. Particle size effects in flash sintering. J Eur Ceram Soc. 2012;32(12):3129–3136. doi: 10.1016/j.jeurceramsoc.2012.04.028
  • Corapcioglu G, Gulgun MA, Kisslinger K, et al. Microstructure and microchemistry of flash sintered K0.5Na0.5NbO3. J Ceram Soc Japan. 2016;124(4):321–328. doi: 10.2109/jcersj2.15290
  • Naik KS, Sglavo VM, Raj R. Flash sintering as a nucleation phenomenon and a model thereof. J Eur Ceram Soc. 2014;34(15):4063–4067. doi: 10.1016/j.jeurceramsoc.2014.04.043
  • Liu D, Gao Y, Liu J, et al. SiC whisker reinforced ZrO2 composites prepared by flash-sintering. J Eur Ceram Soc. 2016;36(8):2051–2055. doi: 10.1016/j.jeurceramsoc.2016.02.014
  • Baraki R, Schwarz S, Guillon O. Effect of electrical field/current on sintering of fully stabilized zirconia. J Am Ceram Soc. 2012;95(1):75–78. doi: 10.1111/j.1551-2916.2011.04980.x
  • Yoshida H, Morita K, Kim BN, et al. Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping. Acta Mater. 2016;106:344–352. doi: 10.1016/j.actamat.2016.01.037
  • Hao X, Liu Y, Wang Z, et al. A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J Power Sour. 2012;210:86–91. doi: 10.1016/j.jpowsour.2012.03.006
  • Muccillo R, Muccillo E, Kleitz M. Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding. J Eur Ceram Soc. 2012;32(10):2311–2316. doi: 10.1016/j.jeurceramsoc.2012.01.032
  • Bichaud E, Chaix J, Carry C, et al. Flash sintering incubation in Al2O3/TZP composites. J Eur Ceram Soc. 2015;35(9):2587–2592. doi: 10.1016/j.jeurceramsoc.2015.02.033
  • Downs JA, Ketharam A, Vaidhyanathan B. Field Assisted sintering of nanostructured zirconia-alumina ceramics for demanding applications. Trans Indian Ceram Soc. 2016;75(2):92–97. doi: 10.1080/0371750X.2016.1172981
  • Liu D, Gao Y, Liu J, et al. Preparation of Al2O3–Y3Al5O12–ZrO eutectic ceramic by flash sintering. Script Mater. 2016;114:108–111. doi: 10.1016/j.scriptamat.2015.12.002
  • Bajpai I, Han Y-H, Yun J, et al. Preliminary investigation of hydroxyapatite microstructures prepared by flash sintering. Adv Appl Ceram. 2016;115(5):276–281. doi: 10.1080/17436753.2015.1136777
  • M’Peko J-C, Francis JS, Raj R. Field-assisted sintering of undoped BaTiO3: microstructure evolution and dielectric permittivity. J Eur Ceram Soc. 2014;34(15):3655–3660. doi: 10.1016/j.jeurceramsoc.2014.04.041
  • Jha SK, Raj R. The effect of electric field on sintering and electrical conductivity of Titania. J Am Ceram. Soc. 2014;97(2):527–534. doi: 10.1111/jace.12682
  • Zhang Y, Luo J. Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120°C. Script Mater. 2015;106:26–29. doi: 10.1016/j.scriptamat.2015.04.027
  • Gaur A, Sglavo VM. Flash-sintering of MnCo2O4 and its relation to phase stability. J Eur Ceram Soc. 2014;34(10):2391–2400. doi: 10.1016/j.jeurceramsoc.2014.02.012
  • Castle E, Sheridan R, Grasso S, et al. Rapid sintering of anisotropic, nanograined Nd–Fe–B by flash-spark plasma sintering. Journal of Magnetism and Magnetic Materials. 2016;417:279–283. doi: 10.1016/j.jmmm.2016.05.067
  • French RH. Electronic band structure of Al2O3, with comparison to Alon and AIN. J Am Ceram Soc. 1990;73(3):477–489. doi: 10.1111/j.1151-2916.1990.tb06541.x
  • Naik K, Jha SK, Raj R. Correlations between conductivity, electroluminescence and flash sintering. Scr Mater. 2016;118:1–4. doi: 10.1016/j.scriptamat.2016.03.001
  • van Benthem K, Elsässer C, French RH. Bulk electronic structure of SrTiO3: Experiment and theory. J Appl Phys. 2001;90(12):6156–6164. doi: 10.1063/1.1415766
  • Reibold M, Gutmann E, Levin AA, et al. Evidence of SrO(SrTiO3)n Ruddlesden-Popper phases by high resolution electron microscopy and holography. In: Richter S., editor. EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany: Volume 2: Materials Science. Berlin: Springer; 2008. p. 569–570.
  • Piskunov S, Heifets E, Eglitis RI, et al. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci. 2004;29(2):165–178. doi: 10.1016/j.commatsci.2003.08.036
  • Anderson J, Chris GVDW. Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys. 2009;72(12):126501. doi: 10.1088/0034-4885/72/12/126501
  • Wijesundara MBJ, Azevedo RG. SiC materials and processing technology. In: Wijesundara BJM, editor. Silicon carbide microsystems for harsh environments. New York (NY): Springer; 2011. p. 33–95.
  • Naik KS. Sintering of ceramic materials under electric field [Phd theses]. Trento: University of Trento; 2014.
  • Kosacki I, Rouleau CM, Becher PF, et al. Surface/interface-related conductivity in nanometer thick YSZ films. ElectroChem Solid-State Lett. 2004;7(12):A459. doi: 10.1149/1.1809556
  • Stuerga D. Microwaves in organic synthesis, 2nd ed. (A. Loupy, editor). Weinheim: Wiley-VCH Verlag Gmbh & Co. KgaA; 2006. p. 1–61.
  • Park JH, Blumenthal RN. Electronic transport in 8 mole percent Y2O3 – ZrO2. J ElectroChem Soc. 1989;136(10):2867–2876. doi: 10.1149/1.2096302
  • Heckelsberg LF, Calrk A, Bailey GC. Electrical conductivity and catalytic activity of zinc oxide. J Phys Chem. 1956;60(5):559–561. doi: 10.1021/j150539a011
  • Ho PS, Kwok T. Electromigration in metals. Rep Prog Phys. 1989;52(3):301–348. doi: 10.1088/0034-4885/52/3/002
  • Kleitz M, Dupuy J. Electrode processes in solid state ionics: theory and application to energy conversion and storage. Boston (MA): Springer; 1976.
  • Sano S, Horiba M, Endo T, et al. Electric conductivity of solid-state electrochemically reduced yttria partially stabilized Zirconia. J Japan Soc Powder Powder Metall. 2004;51(12):847–851. doi: 10.2497/jjspm.51.847
  • Levy M, Fouletier J, Kleitz M. Model for the electrical conductivity of reduced stabilized zirconia. J ElectroChem Soc. 1988;135(6):1584–1589. doi: 10.1149/1.2096057
  • Masó N, West AR. Electronic conductivity in yttria-stabilized zirconia under a small dc bias. Chem Mater. 2015;27(5):1552–1558. doi: 10.1021/cm503957x
  • Kim SW, Kim SG, Jung JI, et al. Enhanced grain boundary mobility in yttria-stabilized cubic zirconia under an electric current. J Am Ceram Soc. 2011;94(12):4231–4238. doi: 10.1111/j.1551-2916.2011.04800.x
  • Kim SW, Kang SJL, Chen IW. Electro-sintering of yttria-stabilized cubic zirconia. J Am Ceram Soc. 2013;96(5):1398–1406. doi: 10.1111/jace.12291
  • Korte C, Zakharov ND, Hesse D. Electric field driven solid state reactions—microscopic investigation of moving phase boundaries in the system MgO/MgIn2O4 /In2O3. Phys Chem Chem Phys. 2003;5(24):5530–5535. doi: 10.1039/B310401J
  • Johnson MT, Carter CB, Schmalzried H. Behavior of MgFe2O4 films on MgO in an electric field. J Am Ceram Soc. 2000;83(7):1768–1772. doi: 10.1111/j.1151-2916.2000.tb01462.x
  • Korte C, Ravishankar N, Carter CB, et al. Kinetics of spinel formation in an external applied electric field. Solid State Ionics. 2002;148(1–2):111–121. doi: 10.1016/S0167-2738(02)00101-7
  • Luo J. Liquid-like interfacial complexion: from activated sintering to grain boundary diagrams. Curr Opin Solid State Mater Sci. 2008;12:81–88. doi: 10.1016/j.cossms.2008.12.001
  • Coblentz WW. Selective radiation from the Nernst glower. Bull Bur Stand. 1908;4:533–551. doi: 10.6028/bulletin.099
  • McLaren C, Heffner W, Tessarollo R, et al. Electric field-induced softening of alkali silicate glasses. Appl Phys Lett. 2015;107(18):184101. doi: 10.1063/1.4934945
  • Lei Y, Ito Y, Browning ND, et al. Segregation effects at grain boundaries in fluorite-structured ceramics. J Am Ceram Soc. 2002;85(9):2359–2363. doi: 10.1111/j.1151-2916.2002.tb00460.x
  • Kang SJL. Sintering: densification, grain growth and microstructure. Burlington: Elsevier Science; 2004.
  • Langer J, Hoffmann MJ, Guillon O. Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: a comparative study. J Am Ceram Soc. 2011;94(8):2344–2353. doi: 10.1111/j.1551-2916.2011.04396.x
  • Akdoǧan EK, Şavkliyildiz I, Biçer H, et al. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: a time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe. J Appl Phys. 2013;113(23):233503. doi: 10.1063/1.4811362
  • Du YX, Stevenson AJ, Vernat D, et al. Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ. J Eur Ceram Soc. 2016;36(3):749–759. doi: 10.1016/j.jeurceramsoc.2015.10.037
  • Holland TB, Anselmi-Tamburini U, Quach DV, et al. Effects of local Joule heating during the field assisted sintering of ionic ceramics. J Eur Ceram Soc. 2012;32(14):3667–3674. doi: 10.1016/j.jeurceramsoc.2012.02.033
  • Chaim R. Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials. 2016;9(4):280. doi: 10.3390/ma9040280
  • Gavrilov KL, Bennison SJ, Mikeska KR, et al. Silica and magnesia dopant distributions in alumina by high-resolution scanning secondary ion mass spectrometry. J Am Ceram Soc. 1999;82(4):1001–1008. doi: 10.1111/j.1151-2916.1999.tb01866.x
  • Grosse KL, Dorgan VE, Estrada D, et al. Direct observation of resistive heating at graphene wrinkles and grain boundaries. Appl Phys Lett. 2014;105(14):143109. doi: 10.1063/1.4896676
  • Frenkel J. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys Rev. 1938;54(8):647–648. doi: 10.1103/PhysRev.54.647
  • Downs JA. Mechanisms of flash sintering in cubic zirconia [PhD thesis]. Trento: University of Trento; 2013.
  • Janek J, Korte C. Electrochemical blackening of yttria-stabilized zirconia â “morphological instability of the moving reaction front. Solid State Ionics. 1999;116(3):181–195. doi: 10.1016/S0167-2738(98)00415-9
  • Gao W, Gao W, Sammes NM. An introduction to electronic and ionic materials. Singapore: World Scientific; 1999.
  • Ropp RC. The chemistry of artificial lighting devices: lamps, phosphors and cathode ray tubes. Amsterdam: Elsevier Science; 2013.
  • Yang D, Conrad H Retardation of grain growth and cavitation by an electric field during superplastic deformation of ultrafine-grained 3Y-TZP at 1,450–1,600 °C. J Mater Sci. 2008;43(13):4475–4482. doi: 10.1007/s10853-008-2653-7
  • Conrad H, Yang D, Becher P. Plastic deformation of ultrafine-grained 2.5Y-TZP exposed to a dc electric field with an air gap. Mater Sci Eng A. 2008;496(1):9–13. doi: 10.1016/j.msea.2008.07.012
  • Conrad H, Yang D. Influence of an applied dc electric field on the plastic deformation kinetics of oxide ceramics. Philos Mag. 2010;90(9):1141–1157. doi: 10.1080/14786430903304137
  • Hewitt I, Lacey A, Todd R. A mathematical model for flash sintering. Math Modell Nat Phenom. 2015;10(6):77–89. doi: 10.1051/mmnp/201510607
  • Dong Y, Chen I. Predicting the onset of flash sintering. J Am Ceram Soc. 2015;98(8):2333–2335. doi: 10.1111/jace.13679
  • Dong Y, Chen IW. Onset criterion for flash sintering. J Am Ceram Soc. 2015;98(12):3624–3627. doi: 10.1111/jace.13866
  • da Silva JGP, Al-Qureshi HA, Keil F, et al. A dynamic bifurcation criterion for thermal runaway during the flash sintering of ceramics. J Eur Ceram Soc. 2016;36(5):1261–1267. doi: 10.1016/j.jeurceramsoc.2015.11.048
  • Narayan J. Grain growth model for electric field-assisted processing and flash sintering of materials. Scr Mater. 2013;68(10):785–788. doi: 10.1016/j.scriptamat.2013.01.008
  • Conrad H, Wang J. Equivalence of AC and DC electric field on retarding grain growth in yttria-stabilized zirconia. Scr Mater. 2014;72–73:33–34. doi: 10.1016/j.scriptamat.2013.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.