Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 116, 2017 - Issue 3
522
Views
24
CrossRef citations to date
0
Altmetric
RESEARCH PAPER

A feasibility study of using CeO2 as a surrogate material during the investigation of UO2 thermal conductivity enhancement

, , &
Pages 123-131 | Received 24 Mar 2015, Accepted 20 Nov 2016, Published online: 18 Jan 2017

References

  • Wang J. Developing a high thermal conductivity nuclear fuel with silicon carbide [PhD thesis]. University of Florida (FL), USA; 2008.
  • Kapoor KA, Laksminarayana A, Rao GVS. Fracture properties of sintered UO2 ceramic pellets with duplex microstructure. J Nucl Mater. 2007;366:87–98. doi: 10.1016/j.jnucmat.2006.12.044
  • Carbajo JJ, Yoder GL, Popov SG, et al. A review of the thermophysical properties of MOX and UO2 fuels: comparison of UO2 and MOX Fuels. J Nucl Mater. 2001;299:439–464. doi: 10.1016/S0022-3115(01)00692-4
  • Zinkle SJ, Terrani KA, Gehin JC, et al. Accident tolerant fuels for LWRs: a perspective. J Nucl Mater. 2014;448:374–379. doi: 10.1016/j.jnucmat.2013.12.005
  • Carmack J. Accident tolerant fuel development program. Nucl Plant J. 2014;32:46–47.
  • Koo YH, Yang JH, Park JY, et al. Kaeri’s development of LWR accident-tolerant fuel. Nucl Technol. 2014;186:295–304.
  • Ben-Belgacem M, Richet V, Terrani KA, et al. Thermo-mechanical analysis of LWR SiC/SiC composite cladding. J Nucl Mater. 2014;447:125–142. doi: 10.1016/j.jnucmat.2014.01.006
  • Ghosh PS, Somayajulu PS, Arya A. Thermal expansion and thermal conductivity of (Th,Ce)O2 mixed oxides: a molecular dynamics and experimental study. J Alloys Compd. 2015;638:172–181. doi: 10.1016/j.jallcom.2015.03.057
  • Dooies B. Enhancement of uranium dioxide thermal and mechanical properties by oxide dopants. Gainesville (FL): University of Florida; 2008.
  • Yeo S, Mckenna E, Baney R, et al. Enhanced thermal conductivity of uranium dioxide–silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS). J Nucl Mater. 2013;433:66–73. doi: 10.1016/j.jnucmat.2012.09.015
  • Hollenbach DF, Ott LJ, Besmann TM, et al. Technical project plan for the enhanced thermal conductivity of oxide fuels through the addition of high thermal conductivity fibers and microstructural engineering. Report ORNL/TM-2010/233 OAK RIDGE NATIONAL LABORATORY, Oak Ridge, USA, 2010.
  • Yang JH, Song KW, Kim KS, et al. A fabrication technique for a UO2 pellet consisting of UO2 grains and a continuous W channel on the grain boundary. J Nucl Mater. 2006;353:202–208. doi: 10.1016/j.jnucmat.2006.01.019
  • Ishimoto S, Hirai M, Ito K, et al. Thermal conductivity of UO2-BeO Pellet. J Nucl Sci Technol. 1996;33:134–140. doi: 10.1080/18811248.1996.9731875
  • U.S. DEPARTMENT OF ENERGY. Developing a high thermal conductivity fuel with silicon carbide additives. Gainesville (FL): University of Florida; 2012.
  • Muller C, Salehi F, Mazer B, et al. Immunotoxicity of 3 chemical forms of beryllium following inhalation exposure. Int J Toxicol. 2011;30:538–545. doi: 10.1177/1091581811413831
  • Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6:96–100. doi: 10.1021/nl052145f
  • Sukhadolau AV, Ivakin EV, Ralchenko VG, et al. Thermal conductivity od CVD diamond at elevated temperatures. Diam Relat Mater. 1996;14:3–7.
  • Winter M. WebElements, periodic table of elements. Sheffield: University of Sheffield; 2015.
  • Petit L, Svane A, Szotek Z, et al. First-principles study of rare-earth oxides. Phys Rev B – Condens Matter Mater Phys. 2005;72: 205118-1–205118-9.
  • Stennett MC, Corkhill CL, Marshall LA, et al. Preparation, characterization and dissolution of a CeO2 analogue for UO2 nuclear fuel. J Nucl Mater. 2013;432:182–188. doi: 10.1016/j.jnucmat.2012.07.038
  • Godinho JRA, Piazolo S, Stennett MC, et al. Sintering of CaF2 pellets as nuclear fuel analog for surface stability experiments. J Nucl Mater. 2011;419:46–51. doi: 10.1016/j.jnucmat.2011.08.031
  • Sonoda T, Kinoshita M, Chimi Y, et al. Electronic excitation effects in CeO2 under irradiations with high-energy ions of typical fission products. Nucl Instrum Methods Phys Res Sect B. 2006;250:254–258. doi: 10.1016/j.nimb.2006.04.120
  • Choi K, Tong W, Maiani DM, et al. Densification of nano-CeO2 ceramics as nuclear oxide surrogate by spark plasma sintering. J Nucl Mater. 2010;404:210–216. doi: 10.1016/j.jnucmat.2010.07.018
  • Hollenbach DF, et al. Status update on U.S. DOE accident tolerant fuel development. T Am Nucl Soc. 2014;110:727–730.
  • Foral S, Rolecek J, Salamon D, et al. Influence of silicone carbide on the reactivity of nuclear fuels using cerium dioxide as a surrogate material. Proc. of the 22nd Inter. Conf. on Nuclear Engineering ICONE22, 2014 July.
  • Barsoum MW. Fundamentals of ceramics. 2nd ed. New York: Taylor; 2003.
  • World Nuclear Association. Nuclear fuel fabrication. 2014 [cited 2015 Mar 1]. Available from: http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Conversion-Enrichment-and-Fabrication/Fuel-Fabrication/
  • Ge L, Subhash G, Baney RH, et al. Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering. J Am Ceram Soc. 2014;34:1791–1801. doi: 10.1016/j.jeurceramsoc.2014.01.018
  • Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 8th ed. New York: Wiley; 2010.
  • Zhou H, Yi D, Yu Z, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings. J Alloys Compd. 2007;438:217–221. doi: 10.1016/j.jallcom.2006.08.005
  • Mogensen M. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics. 2000;129:63–94. doi: 10.1016/S0167-2738(99)00318-5
  • Shackelford JF. CRC materials science and engineering handbook. 3rd ed. London: CRC Press; 2001.
  • Tulenko JS, Baney RH. An innovative high thermal conductivity fuel design. Gainesville (FL): University of Florida; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.