Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 117, 2018 - Issue 3
384
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

In situ synthesis of ZrB2–ZrC–SiC ultra-high-temperature nanocomposites by a sol–gel process

, , &
Pages 189-195 | Received 01 Jul 2016, Accepted 23 Oct 2017, Published online: 05 Feb 2018

References

  • Monteverde F, Bellosi A. The resistance to oxidation of an HfB2–SiC composite. J Eur Ceram Soc. 2005;25(7):1025–1031.
  • Monteverde F, Bellosi A, Scatteia L. Processing and properties of ultra-high temperature ceramics for space applications. Mater Sci Eng A. 2008;485(1–2):415–421.
  • Ghosh D, Subhash G, Orlovskaya N. Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy. Acta Mater. 2008;56(18):5345–5354.
  • Ghosh D, Subhash G, Radhakrishnan R, et al. Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite. Acta Mater. 2008;56(13):3011–3022.
  • Mallik M, Ray KK, Mitra R. Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J Eur Ceram Soc. 2011;31:199–215.
  • Jalaly M, Bafghi MS, Tamizifar M, et al. The role of boron oxide and carbon amounts in the mechanosynthesis of ZrB2–SiC–ZrC nanocomposite via a self-sustaining reaction in the zircon/magnesium/boron oxide/graphite system. J Alloys Compd.  2014;598:113–119.
  • Parthasarathy TA, Rapp RA, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007;55(17):5999–6010.
  • Jalaly M, Bafghi MS, Tamizifar M, et al. Formation mechanism of ZrB2–Al2O3 nanocomposite powder by mechanically induced self-sustaining reaction. J Mater Sci. 2013;48(21):7557–7567.
  • Ghelich R, Mehdinavaz Aghdam R, Torknik FS, et al. Carbothermal reduction synthesis of ZrB2 nanofibers via pre-oxidized electrospun zirconium n-propoxide. Ceram Int.  2015;41(5):6905–6911.
  • Mallik M, Roy S, Ray KK, et al. Effect of SiC content, additives and process parameters on densification and structure–property relations of pressureless sintered ZrB2–SiC composites. Ceram Int. 2013;39(3):2915–2932.
  • Han J, Hu P, Zhang X, et al. Oxidation-resistant ZrB2–SiC composites at 2200°C. Compos Sci Technol. 2008;68(3–4):799–806.
  • Meng S, Chen H, Hu J, et al. Radiative properties characterization of ZrB2–SiC-based ultrahigh temperature ceramic at high temperature. Mater Des. 2011;32(1):377–381.
  • Wang XG, Liu J, Peng LM. Zrb2–SiC composite parts in oxyacetylenic torch tests: experimental and computational assessment of chemical, thermal and mechanical behavior. Mater Sci Eng A. 2011;528(22–23):6896–6906.
  • Padovano E, Badini C, Biamino S, et al. Pressureless sintering of ZrB2–SiC composite laminates using boron and carbon as sintering aids. Adv Appl Ceram. 2013;112(8):478–486.
  • Debnath D, Chakraborty S, Mallick aR, et al. Mechanical, tribological and thermal properties of hot pressed ZrB2–SiC composite with SiC of different morphology. Adv Appl Ceram. 2015;114(1):45–54.
  • Qu Q, Han J, Han W, et al. In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Mater Chem Phys. 2008;110(2–3):216–221.
  • Zhang X, Qu Q, Han J, et al. Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing. Scr Mater. 2008;59(7):753–756.
  • Li L, Li H, Shen Q, et al. Oxidation behavior and microstructure evolution of SiC–ZrB2–ZrC coating for C/C composites at 1673 K. Ceram Int. 2016;42:13041–13046.
  • Emami SM, Salahi E, Zakeri M, et al. Synthesis of ZrB2–SiC–ZrC nanocomposite by spark plasma in ZrSiO4/B2O3/C/Mg system. Ceram Int. 2016;42:6581–6586.
  • Li Y, Han W, Li H, et al. Synthesis of nano-crystalline ZrB2/ZrC/SiC ceramics by liquid precursors. Mater Lett. 2012;68:101–103.
  • Xie Y. Solution-based synthesis and processing of nanocrystalline ZrB2-based composites. PhD thesis, Georgia institute of technology. 2008.
  • Zhang Y, Zhang Y, Li R-X, et al. Synthesis of ZrB2–SiC composite powders by sol–gel method using acetic acid as chemical modifier. J Taiwan Inst Chem Eng. 2015;46:200–204.
  • Zhao B, Zhang Y, Yang B, et al. Morphology and mechanism study for the synthesis of ZrB2–SiC powders by different methods. J Solid State Chem.  2013;207:1–5.
  • Cao Y, Zhang H, Li F, et al. Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method. Ceram Int. 2015;41(6):7823–7829.
  • Ang C, Seeber A, Wang K, et al. Modification of ZrB2 powders by a sol–gel ZrC precursor—A new approach for ultra high temperature ceramic composites. J Asian Ceram Soc. 2013;1(1):77–85.
  • Dollé M, Gosset D, Bogicevic C, et al. Synthesis of nanosized zirconium carbide by a sol–gel route. J Eur Ceram Soc. 2007;27(4):2061–2067.
  • Zhang Y, Li R, Jiang Y, et al. Morphology evolution of ZrB2 nanoparticles synthesized by sol–gel method. J Solid State Chem.  2011;184(8):2047–2052.
  • Kubota Y, Tanaka H, Arai Y, et al. Oxidation behavior of ZrB2–SiC–ZrC at 1700°C. J Eur Ceram Soc. 2017;37(4):1187–1194.
  • Najafi A, Golestani-Fard F, Rezaie HR, et al. Effect of APC addition on stability of nanosize precursors in sol–gel processing of SiC nanopowder. J Alloys Compd. 2010;505(2):692–697.
  • Najafi a, Fard FG, Rezaie HR, et al. Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method. Powder Technol.  2012;219:202–210.
  • Najafi A, Golestani-Fard F, Rezaie HR, et al. A study on sol–gel synthesis and characterization of SiC nano powder. J Sol–Gel Sci Technol.  2011;59(2):205–214.
  • Liu C, Li K, Li H, et al. Synthesis, characterization and ceramization of a carbon-rich zirconium-containing precursor for ZrC ceramic. Ceram Int. 2014;40(5):7285–7292.
  • Ji H, Yang M, Li M, et al. Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol–gel processing route. Adv Powder Technol.  2014;25(3):910–915.
  • Campos KS, Silva GFBLeI, Nunes EHM, et al. Synthesis and characterization of sol–gel derived ZrB2–ZrC compounds. J Ceram Process Res. 2014;15(6):403–407.
  • Hasegawa I, Nakamura T, Motojima S, et al. Synthesis of silicon carbide fibers by sol–gel processing. J Sol–Gel Sci Technol.  1997;8(1–3):577–579.
  • Xu L, Huang C, Liu H, et al. Study on in-situ synthesis of ZrB2 whiskers in ZrB2–ZrC matrix powder for ceramic cutting tools. Int J Refract Met Hard Mater. 2013;37:98–105.
  • Yang B, Li J, Zhao B, et al. Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route. Powder Technol.  2014;256:522–528.
  • Martin H-P, Ecke R, Müller E. Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction. J Eur Ceram Soc.  1998;18(12):1737–1742.
  • Koc R, Glatzmaier G, Sibold J. β-SiC production by reacting silica gel with hydrocarbon gas. J Mater Sci. 2001;36(4):995–999.
  • Yan Y, Huang Z, Dong S, et al. New route to synthesize ultra-fine zirconium diboride powders using inorganic–organic hybrid precursors. J Am Ceram Soc.  2006;89(11):3585–3588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.