Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 4
123
Views
7
CrossRef citations to date
0
Altmetric
Articles

Oxidation and strength retention of HfB2−SiC composite with La2O3 additives

Pages 218-223 | Received 30 Jan 2020, Accepted 07 Apr 2020, Published online: 23 Apr 2020

References

  • Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90:1347–1364. doi: 10.1111/j.1551-2916.2007.01583.x
  • Kalish D, Clougherty EV, Kreder K. Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J Am Ceram Soc. 1969;52:30–36. doi: 10.1111/j.1151-2916.1969.tb12655.x
  • Upadhya K, Yang JM, Hoffmann WP. Materials for ultrahigh temperature structural applications. Am Ceram Soc Bull. 1997;76:51–56.
  • Savino R, Fumo MDS, Silvestroni L, et al. Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J Eur Ceram Soc. 2008;28:1899–1907. doi: 10.1016/j.jeurceramsoc.2007.11.021
  • Berkowitz-Mattuck JB. High temperature oxidation. J Electrochem Soc. 1966;113:908–914. doi: 10.1149/1.2424154
  • Parthasarathy TA, Rapp RA, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007;55:5999–6010. doi: 10.1016/j.actamat.2007.07.027
  • Tripp WC, Davis HH, Graham HC. Effect of an SiC addition on the oxidation of ZrB2. Am Ceram Soc Bull. 1973;52:612–616.
  • Hinze JW, Tripp WC, Graham HC. The high temperature oxidation behavior of a HfB2 + 20 v/o SiC composite. J Electrochem Soc. 1975;122:1249–1253. doi: 10.1149/1.2134436
  • Jayaseelan DD, Zapata-Solvas E, Brown P, et al. In situ formation of oxidation resistant refractory coating on SiC-reinforced ZrB2 ultra high temperature ceramics. J Am Ceram Soc. 2012;95:1247–1254. doi: 10.1111/j.1551-2916.2011.05032.x
  • Fahrenholtz WG, Hilmas GE. Oxidation of ultra-high temperature transition metal diboride ceramics. Int Mater Rev. 2012;57:61–72. doi: 10.1179/1743280411Y.0000000012
  • Guo SQ, Yang JM, Tanaka H, et al. Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles. Compos Sci Technol. 2008;68:3033–3040. doi: 10.1016/j.compscitech.2008.06.021
  • Chamberlain AL, Fahrenholtz WG, Hilmas GE. High-strength zirconium diboride-based ceramics. J Am Ceram Soc. 2004;87:1170–1172. doi: 10.1111/j.1551-2916.2004.01170.x
  • Zhu S, Fahrenholtz WG, Hilmas GE. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. J Eur Ceram Soc. 2007;27:2077–2083. doi: 10.1016/j.jeurceramsoc.2006.07.003
  • Guo SQ. High-temperature mechanical behavior of ZrB2-based composites with micrometer- and nano-sized SiC particles. J Am Ceram Soc. 2018;101:2707–2711. doi: 10.1111/jace.15446
  • Monteverde F, Bellosi A. Microstructure and properties of an HfB2-SiC composite for ultra-high temperature applications. Adv Eng Mater. 2004;6:331–336. doi: 10.1002/adem.200400016
  • Guo SQ, Liu TW, Ping DH, et al. Enhanced high-temperature strength of HfB2-SiC composite up to 1600°C. J Eur Ceram Soc. 2018;38:1152–1157. doi: 10.1016/j.jeurceramsoc.2017.12.040
  • Paul A, Jayaseelan DD, Venugopal S, et al. UHTS composites for hypersonic applications. Am Ceram Soc Bull. 2012;91:22–29.
  • Wuchina E, Opila E, Opeka M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Interface. 2007;16:30–36.
  • Savino R, Fumo MD. Aerothermodynamic study of ultra-high temperature ceramic winglet for atmospheric reentry test. J Thermophys Heat Transf. 2008;22:669–676. doi: 10.2514/1.33296
  • Squire TH, Marschall J. Material property requirements for analysis and design of UHTC composites in hypersonic application. J Eur Ceram Soc. 2010;30:2239–2251. doi: 10.1016/j.jeurceramsoc.2010.01.026
  • Zapata-Solvas E, Jayaseelan DD, Brown PM, et al. Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics. J Eur Ceram Soc. 2014;34:3535–3548. doi: 10.1016/j.jeurceramsoc.2014.06.004
  • Guo SQ, Mizuguchi T, Ikegami M, et al. Oxidation behavior of ZrB2-MoSi2-SiC composites in air at 1500°C. Ceram Int. 2011;37:585–591. doi: 10.1016/j.ceramint.2010.09.034
  • Lange FF, Davis BI, Graham HC. Compressive creep and oxidation resistance of an Si3N4 material fabricated in the system Si3N4-Si2N2O-Y2Si2O7. J Am Ceram Soc. 1983;66:C98–C99.
  • Mieskowski DM, Sanders WA. Oxidation of silicon nitride sintered with rare-earth oxide additions. J Am Ceram Soc. 1985;68:C160–C163.
  • Babini GN, Bellosi A, Vincenzini P. Factors influencing structural evolution in the oxide of hot-pressed Si3N4-Y2O3-SiO2 materials. J Mater Sci. 1984;19:3487–3497. doi: 10.1007/BF02396923
  • Chen M, Li H, Yao X, et al. High temperature oxidation resistance of La2O3-modified ZrB2-SiC coating for SiC-coated carbon/carbon composites. J Alloys Compd. 2018;765:37–45. doi: 10.1016/j.jallcom.2018.06.230
  • Guo SQ. Strength retention in hot-pressed ZrB2-SiC composite after thermal cycling exposure in air at 1200°C and 1400°C. J Am Ceram Soc. 2019;102:3843–3848. doi: 10.1111/jace.16413
  • Park H, Kim HW, Kim HE. Oxidation and strength retention of monolithic Si3N4 and nanocomposite Si3N4-SiC with Yb2O3 as a sintering aid. J Am Ceram Soc. 1998;81:2130–2134. doi: 10.1111/j.1151-2916.1998.tb02596.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.