Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 119, 2020 - Issue 5-6: Advanced Ceramics for Dentistry
130
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Preliminary evaluates of silica/β-TCP/PLGA microspheres for dentin regeneration in vivo

, , , &
Pages 357-363 | Received 15 Sep 2019, Accepted 04 Nov 2019, Published online: 06 May 2020

References

  • Koike T, Polan MAA, Izumikawa M, et al. Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. Biomed Res Int. 2014;1:745139.
  • Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17:185–187. doi: 10.1034/j.1600-9657.2001.017004185.x
  • Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30:196–200. doi: 10.1097/00004770-200404000-00003
  • Jung IY, Lee SJ, Hargreaves KM. Biologically based treatment of immature permanent teeth with pulpal necrosis: a case series. J Endod. 2008;34:876–887. doi: 10.1016/j.joen.2008.03.023
  • Ding RY, Cheung GS, Chen J, et al. Pulp revascularization of immature teeth with apical periodontitis: a clinical study. J Endod. 2009;35:745–749. doi: 10.1016/j.joen.2009.02.009
  • Wang XJ, Thibodeau B, Trope M, et al. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 2010;36:56–63. doi: 10.1016/j.joen.2009.09.039
  • Martin G, Ricucci D, Gibbs JL, et al. Histological findings of revascularized/revitalized immature permanent molar with apical periodontitis using platelet-rich plasma. J Endod. 2013;39:138–144. doi: 10.1016/j.joen.2012.09.015
  • Zhu W, Zhu X, Huang GT, et al. Regeneration of dental pulp tissue in immature teeth with apical periodontitis using platelet-rich plasma and dental pulp cells. Int Endod J. 2013;46:962–970. doi: 10.1111/iej.12087
  • Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025–1032. doi: 10.1038/nbt864
  • Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31:711–718. doi: 10.1097/01.don.0000164138.49923.e5
  • Sharma S, Srivastava D, Grover S, et al. Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res. 2014;8:309–315.
  • Qu T, Liu X. Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J Mater Chem B. 2013;1:4764–4772. doi: 10.1039/c3tb21002b
  • Nakashima M, Iohara K, Murakami M. Dental pulp stem cells and regeneration. Endod Topic. 2013;28:38–50. doi: 10.1111/etp.12027
  • Gong T, Heng BC, Lo EC, et al. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016: 1–13. doi: 10.1155/2016/9204574
  • Colombo JS, Moore AN, Hartgerink JD, et al. Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod. 2014;40:S6–S12. doi: 10.1016/j.joen.2014.01.019
  • Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4:697–707. doi: 10.2217/rme.09.45
  • Tran HB, Doan VN. Human dental pulp stem cells cultured onto dentin derived scaffold can regenerate dentin-like tissue in vivo. Cell Tissue Bank. 2015;16:559–568. doi: 10.1007/s10561-015-9503-z
  • Huang GT, Garcia-Godoy F. Missing concepts in de novo pulp regeneration. J Dent Res. 2014;93:717–724. doi: 10.1177/0022034514537829
  • Struyf E, Conley DJ. Silica: An essential nutrient in wetland biogeochemistry. Front Ecol Environ View. 2009;7:88–94. doi: 10.1890/070126
  • Carlisle EM. Silicon as an essential trace element in animal nutrition. In: Evered D, O’Connor M, editors. Silicon biochemistry, CIBA foundation symposium 121. Chichester: Wiley; 1986. p. 123–136.
  • Van Dyck K, Robberecht H, van Cauwenbergh R, et al. Indication of silicon essentiality in humans. Biol Trace Elem Res. 2000;77:25–32. doi: 10.1385/BTER:77:1:25
  • Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279–280. doi: 10.1126/science.167.3916.279
  • Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature. 1972;239(5371):333–334. doi: 10.1038/239333a0
  • Wiens M, Wang XH, Schlossmacher U, et al. Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int. 2010;87:513–524. doi: 10.1007/s00223-010-9408-6
  • Wang X, Schröder HC, Müller WE. Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine. Trends Biotechnol. 2014;32:441–447. doi: 10.1016/j.tibtech.2014.05.004
  • Wang X, Schröder HC, Wiens M, et al. Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol. 2012;23:570–578. doi: 10.1016/j.copbio.2012.01.018
  • Zhu W, Gao X, Zou X, et al. Biosilica porous microspheres promote the osteogenic/odontogenic differentiation of human dental pulp cells. J Biomater Tiss Eng. 2018;8:258–266. doi: 10.1166/jbt.2018.1740
  • Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006;24:299–304. doi: 10.1016/j.tibtech.2006.04.009
  • Wang S, Wang X, Draenert FG, et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014;67:292–304. doi: 10.1016/j.bone.2014.07.025
  • Haixia L, Ruyuan Z, Chenyue L, et al. Evaluation of decalcification techniques for rat femurs using HE and immunohistochemical staining. Biomed Res Int. 2017;4:1–6.
  • Yoko H, Yoshihito N, Ryo J, et al. Bone ingrowth to Ti fibre knit block with high deformability. J Oral Maxillofac Res. 2016;7(4):e2.
  • Shie MY, Ding SJ. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements. Biomaterials. 2013;34(28):6589–6606. doi: 10.1016/j.biomaterials.2013.05.075
  • Sun J, Wei L, Liu X, et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater. 2009;5(4):1284–1293. doi: 10.1016/j.actbio.2008.10.011
  • Karjalainen S, Söderling E, Pelliniemi L, et al. Immunohistochemical localization of types I and III collagen and fibronectin in the dentine of carious human teeth. Arch Oral Biol. 1986;31:801–806. doi: 10.1016/0003-9969(86)90131-7
  • Andujar MB, Couble P, Couble ML, et al. Differential expression of type I and type III collagen genes during tooth development. Development. 1991;111:691–698.
  • Garcia JM, Martins MD, Jaeger RG, et al. Immunolocalization of bone extracellular matrix proteins (type I collagen, osteonectin and bone sialoprotein) in human dental pulp and cultured pulp cells. Int Endod J. 2003;36:404–410. doi: 10.1046/j.1365-2591.2003.00669.x
  • Mao YQ, Ohsaki Y, Kurisu K. Immunohistochemical study of the relationship between extracellular matrix and root bifurcation in the mouse molar. Arch Oral Biol. 1990;35:583–591. doi: 10.1016/0003-9969(90)90023-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.