Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 121, 2022 - Issue 3
208
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electrical transport properties of La doped BiFeO3-NaNbO3 composite

, , &
Pages 109-118 | Received 24 Dec 2021, Accepted 01 Jun 2022, Published online: 13 Jun 2022

References

  • Cano A, Meier D, Trassin M. Multiferroics: fundamentals and applications. Walter de Gruyter GmbH, Berlin/Boston; 2021; doi:10.1515/9783110582130.
  • Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics. 1994;162(1):317–338. doi:10.1080/00150199408245120.
  • Fiebig M. J Phys. 2005;38:R123. doi:10.1088/0022-3727/38/8/R01.
  • Hill NA, Filippetti A. Why are there any magnetic ferroelectrics?. J Magn Magn Mater. 2002;242–245:976–979. doi:10.1016/S0304-8853(01)01078-2.
  • Spaldin NA, Friebig M. The renaissance of magnetoelectric multiferroics. Science. 2005;309(5733):391–392. doi:10.1126/science.1113357.
  • Lawes G, Srinivasan G. Introduction to magnetoelectric coupling and multiferroic films. J Phys D: Appl Phys. 2011;44(24):243001. doi:10.1088/0022-3727/44/24/243001.
  • Vopson MM. Fundamentals of multiferroic materials and their possible applications. Crit Rev Solid State Mater Sci. 2015;40(4):223–250. doi:10.1080/10408436.2014.992584.
  • Gao R, Xu Z, Bai L, et al. Electric field-induced magnetization rotation in magnetoelectric multiferroic fluids. Adv Electron Mater. 2018;4(6):1800030. doi:10.1002/aelm.201800030.
  • Fischer P, Polomskya M, Sosnowska II, et al. Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C Solid State Phys. 1980;13:1931–1940. doi:10.1088/0022-3719/13/10/012.
  • Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr B: Struct Sci Cryst. 1990;46:698–702. doi:10.1107/S0108768190006887.
  • Michel C, Moreau JM, Achenbach GD, et al. The atomic structure of BiFeO3. Solid State Commun. 1969;7:701–704. doi:10.1016/0038-1098(69)90597-3.
  • Silva J, Reyes A, Esparza H, et al. BiFeO3: A review on synthesis, doping and crystal structure. Integr Ferroelectr. 2011;126:47–59. doi:10.1080/10584587.2011.574986.
  • Simones AZ, Cavalcante LS, Riccardi CS, et al. Improvement of fatigue resistance on La modified BiFeO3 thin films. Curr Appl Phys. 2009;9:520–523. doi:10.1016/j.cap.2008.05.001.
  • Jiang QH, Nan CW, Wang Y, et al. Synthesis and properties of multiferroic BiFeO3 ceramics. J Electroceram. 2008;21:690–693, doi:10.1007/s10832-007-9265-5.
  • Pradhan SK. Raman and electrical studies of multiferroic BiFeO3. J Mater Sci Mater Electron. 2013;24(9):3581–3586. doi:10.1007/s10854-013-1288-x.
  • Han S, Kim CS. J Appl Phys. 2013;113:921. doi:10.1063/1.4801338.
  • Lu J, Gunther A, Schrettle F, et al. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties. Eur Phys J B. 2010;75:451–460. doi:10.1140/epjb/e2010-00170-x.
  • Jarrier R, Marti X, Herrero-Albillos J, et al. Surface phase transitions in BiFeO3 below room temperature. Phys Rev B. 2012;85:184104. doi:10.1103/PhysRevB.85.184104.
  • Rao TD, Karthik T, Asthana S. J Rare Earth. 2013;3:370–375. doi:10.1016/S1002-0721(12)60288-9.
  • Dai H, Chen Z, Li T, et al. Microstructure and properties of Sm-substituted BiFeO3 ceramics. J Rare Earth. 2012;30(30):1123–1128. doi:10.1016/S1002-0721(12)60191-4.
  • Chang F, Song G, Fang K, et al. Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J Rare Earths. 2006;24:273–276. doi:10.1016/S1002-0721(07)60379.
  • Behera AK, Mohanty NK, Satpathy SK, et al. Central Europian J Phy. 2012;12:851. doi:10.2478/s11534-014-0523.
  • Mohanty NK, Behera AK, Satpathy SK, et al. Influence of Gd on structural and impedance properties of multiferroic composites: BiFeO3-PbTiO3. Adv Mater Lett. 2015;6:947–953. doi:10.5185/amlett.2015.5839.
  • Kumar MM, Srinivas A, Suryanarayana SV, et al. Dielectric and impedance studies on BiFeO3–BaTiO3 solid solutions. Phys Status Solidi A. 1998;165:317–326. doi:10.1002/(SICI)1521-396X(199801)165:1<317::AID-PSSA317>3.0.CO;2-Y.
  • Ivanova TL, Gagulin VV. Dielectric properties in the microwave range of solid solutions in the BiFeO3-SrTiO3 system. Ferroelectrics. 2002;265:241–246, doi:10.1080/00150190208260624.
  • Smith RT, Achenbach GD, Gerson R, et al. Dielectric properties of solid solutions of BiFeO3 with Pb(Ti, Zr)O3 at high temperature and high frequency. J Appl Phys. 1968;39:70–74. doi:10.1063/1.1655783.
  • Satpathy SK, Mohanty NK, Behera AK, et al. Dielectric and electrical properties of BiFeO3-PbZrO3 composites. J Elect Mat. 2015;44:4290–4299. doi:10.1007/s11664-015-3944-9.
  • Satpathy SK, Mohanty NK, Behera AK, et al. Dielectric and electrical properties of 0.5(BiGd0.05Fe0.95O3)-0.5(PbZrO3) composite. Mater Sci-Pol. 2014;32:59–65. doi:10.2478/s13536-013-0155-z.
  • Mohanta D, Mohanty NK, Behera B. Effect of Gd on structural, dielectric and electrical transport properties of multiferroic ceramic composite BiFeO3–NaNbO3. Composites Part C: Open Access. 2020;2:100024. doi:10.1016/j.jcomc.2020.100024.
  • Tyunina M, Dejneka A, Rytz D, et al. Ferroelectricity in antiferroelectric NaNbO3 crystal. J Phys Condensed Matter. 2014;26:125901. doi:10.1088/0953-8984/26/12/125901.
  • Cross E. Lead-free at last. Nature. 2004;432:24–25. doi:10.1038/nature03142.
  • Johnston KE, Tang CC, et al. The polar phase of NaNbO3: A combined study by powder diffraction, solid-state NMR, and first-principles calculations. J Am Chem Soc. 2010;132:8732–8746. doi:10.1021/ja101860r.
  • Raevskaya SI, Kubrin SP, Zhuang J, et al. Mössbauer and magnetization studies of magnetic phase transitions in 0.5BiFeO3 –0.5NaNbO3 and 0.5LaFeO3–0.5NaNbO3 solid solutions. J Advanced Dielectrics. 2020;10:2060005. doi:10.1142/S2010135X2060005X.
  • Qi H, Xie A, Tian A, et al. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv Energy Mater. 2020;10:1903338. doi:10.1002/aenm.201903338.
  • De M, Hajra S, Tiwari R, et al. Structural, dielectric and electrical characteristics of BiFeO3-NaNbO3 solid solutions. Ceramic Int. 2018;44:11792–11797. doi:10.1016/j.ceramint.2018.03.263.
  • Ma Y, Ming Chen X. Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J Appl Phys. 2009;105:054107. doi:10.1063/1.3081648.
  • Dash S, Padhee R, Das PR, et al. Enhancement of dielectric and electrical properties of NaNbO3-modified BiFeO3. J Mater Sci Mater Electron. 2013;24:3315–3323. doi:10.1007/s10854-013-1249-4.
  • Wu E. POWD: an interactive powder diffraction data interpretation and indexing program, Ver. 2.1,1989, School of Physical Science, Flindres University, South Bedford Park, SA 5042, Australia.
  • Scherrer P. Gottinger nachrichten: nanoscience and the scherrer equation. S Afr J Sci. 1918;2:98–100.
  • Allen A, Thomas E. The structure of material. New York: John Wiley; 1999.
  • Goldschmidt V. Die gesetze der krystallochemie. Die Nature Wissenschaften. 1926;14:477–485. doi:10.1007/BF01507527.
  • Fu WT, Visser D, Knight KS, et al. Temperature-induced phase transitions in BaTbO3. J Solid State Chem. 2004;177:1667–1671. doi:10.1016/j.jssc.2003.12.022.
  • Triana CA, Corredor LT, Tellez DA, et al. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite. Mater Res Bull. 2011;46:2478–2483. doi:10.1016/j.materresbull.2011.08.024.
  • Woodward DI, Reaney IM. Electron diffraction of tilted perovskites. Acta Crystallographica Section B Structural Science. 2005;61:387–399. doi:10.1107/S0108768105015521.
  • Reaney IM, Colla EL, Setter N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys. 1994;33:3984–3990. doi:10.1143/JJAP.33.3984.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32:751–767. doi:10.1107/S0567739476001551.
  • Gao R, Zhang Q, Xu Z, et al. A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos B Eng. 2019;166:204–212. doi:10.1016/j.compositesb.2018.12.010.
  • Xu R, Wang Z, Gao R, et al. Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. J Mater Sci: Mater Electron. 2018;29:16226–16237. doi:10.1007/s10854-018-9712-x.
  • Gao R, Qin X, Zhang Q, et al. Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J Alloys Compd. 2019;795:501–512. doi:10.1016/j.jallcom.2019.05.013.
  • Zhang M, Chen Z, Yue Y, et al. Terahertz reading of ferroelectric domain wall dielectric switching. ACS App Mat & Interfaces. 2021;13:12622–12628. doi:10.1021/acsami.1c00523.
  • Mohanty NK, Behera AK, Satpathy SK, et al. Effect of dysprosium substitution on structural and dielectric properties of BiFeO3-PbTiO3 multiferroic composites. J Rare Earth. 2015;33:639–646. doi:10.1016/S1002-0721(14)60465-8.
  • Yue Y, Xu X, Zhang M, et al. Grain size effects in Mn-modified 0.67BiFeO3–0.33BaTiO3 ceramics. ACS App Mat & Interfaces. 2021;13:57548–57559. doi:10.1021/acsami.1c16083.
  • Uniyal P, Yadav KL. Room temperature multiferroic properties of Eu doped BiFeO3. J Appl Phys. 2009;105:07D914. doi:10.1063/1.3072087.
  • Ray A, Basu T, Behera B, et al. Mater Chem Phys. 2020;239:12220. doi:10.1016/j.matchemphys.2019.122250.
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673–679. doi:10.1038/267673a0.
  • Grigas J. Microwave dielectric spectroscopy of ferroelectrics and related materials. Asjdha: Gordon and Breach Pub. Inc. Amsterdam; 1996. 336.
  • Mohanty NK. Ph.D Thesis, Complex impedance study of some rare earth based multiferroics composites, Sambalpur University, Odisha, India. 2017, http://hdl.handle.net/10603/276715.
  • Austin IG, Mott NF. Polarons in crystalline and non-crystalline materials. Adv Phys. 1969;18:41–102. doi:10.1080/00018736900101267.
  • Lakshmi SD, Banu IBS. Int J App Cer So. 2019;16:1622. doi:10.1111/ijac.13201.
  • Pradhan SK, Sahu DR, Roul BK. J Laser Res Appl. 2017;1:001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.