Publication Cover
Stochastics
An International Journal of Probability and Stochastic Processes
Volume 95, 2023 - Issue 1
1,060
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Standard and fractional reflected Ornstein–Uhlenbeck processes as the limits of square roots of Cox–Ingersoll–Ross processes

ORCID Icon &
Pages 99-117 | Received 24 Sep 2021, Accepted 22 Feb 2022, Published online: 17 Mar 2022

References

  • O.O. Aalen and H.K. Gjessing, Survival models based on the Ornstein-Uhlenbeck process, Lifetime Data Anal. 10 (2004), pp. 407–423.
  • C.A. Ball and A. Roma, Stochastic volatility option pricing, J. Financ. Quantitative Anal. 29 (1994), pp. 589–607.
  • L. Bo, D. Tang, Y. Wang and X. Yang, On the conditional default probability in a regulated market: a structural approach, Quantitative Financ. 11 (2011), pp. 1695–1702.
  • L. Bo, Y. Wang and X. Yang, Some integral functionals of reflected SDEs and their applications in finance, Quantitative Financ. 11 (2011), pp. 343–348.
  • J.C. Cox, J.E. Ingersoll and S.A. Ross, A re-examination of traditional hypotheses about the term structure of interest rates, The J. Financ. 36 (1981), pp. 769–799.
  • J.C. Cox, J.E. Ingersoll and S.A. Ross, An intertemporal general equilibrium model of asset prices, Econometrica: J. Econ. Soc. 53 (1985), pp. 363.
  • J.C. Cox, J.E. Ingersoll and S.A. Ross, A theory of the term structure of interest rates, Econometrica: J. Econom. Soc. 53 (1985), pp. 385.
  • G. Di Nunno, Y. Mishura and A. Yurchenko-Tytarenko, Sandwiched SDEs with unbounded drift driven by Holder noises, preprint (2020), Available at ArXiv 2012.11465.
  • V. Giorno, A.G. Nobile and R. di Cesare, On the reflected Ornstein-Uhlenbeck process with catastrophes, Appl. Math. Comput. 218 (2012), pp. 11570–11582.
  • V. Giorno, A.G. Nobile and L.M. Ricciardi, On some diffusion approximations to queueing systems, Adv. Appl. Probab. 18 (1986), pp. 991–1014.
  • R.S. Goldstein and W.P. Keirstead, On the term structure of interest rates in the presence of reflecting and absorbing boundaries, preprint (1997). doi:10.2139/ssrn.19840.
  • S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6 (1993), pp. 327–343.
  • J. Hong, C. Huang, M. Kamrani and X. Wang, Optimal strong convergence rate of a backward Euler type scheme for the Cox-Ingersoll-Ross model driven by fractional Brownian motion, Stoch. Process. Appl. 130 (2020), pp. 2675–2692.
  • N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math. 14 (1977), pp. 619–633.
  • N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Elsevier, 1981.
  • I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1998.
  • P.R. Krugman, Target zones and exchange rate dynamics, The Quarterly J. Econ. 106 (1991), pp. 669–682.
  • K. Kubilius, Estimation of the Hurst index of the solutions of fractional SDE with locally Lipschitz drift, Lithuanian Association of Nonlinear Analysts (LANA). Nonlinear Analysis. Modelling and Control 25 (2020), pp. 1059–1078.
  • C. Lee and J. Song, On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes, Stoch. An Int. J. Probab. Stoch. Process. 88 (2016), pp. 751–778.
  • V. Linetsky, On the transition densities for reflected diffusions, Adv. Appl. Probab. 37 (2005), pp. 435–460.
  • Y. Maghsoodi, Solution of the extended CIR term structure and bond option valuation, Math. Financ. An Int. J. Math., Stat. Financial Econom. 6 (1996), pp. 89–109.
  • A. Melnikov, Y. Mishura and G. Shevchenko, Stochastic viability and comparison theorems for mixed stochastic differential equations, Methodol. Comput. Appl. Probab. 17 (2015), pp. 169–188.
  • Y. Mishura and A. Yurchenko-Tytarenko, Fractional Cox-Ingersoll-Ross process with non-zero “mean”, Modern Stoch.: Theor. Appl. 5 (2018), pp. 99–111.
  • V.I. Piterbarg, Twenty Lectures About Gaussian Processes, Atlantic Financial Press, 2015.
  • L.M. Ricciardi, Stochastic population theory: Diffusion processes, Mathematical Ecology, Springer, Berlin Heidelberg, (1986), pp. 191–238.
  • L.C.G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales, Cambridge University Press, 2000.
  • R. Schöbel and J. Zhu, Stochastic volatility with an Ornstein-Uhlenbeck process: an extension, Rev. Financ. 3 (1999), pp. 23–46.
  • T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 27 (1973), pp. 37–46.
  • A.V. Skorokhod, Stochastic equations for diffusion processes in a bounded region, Theor. Probab. Appl. 6 (1961), pp. 264–274.
  • A.R. Ward and P.W. Glynn, A diffusion approximation for a Markovian queue with reneging, Queueing Syst. 43 (2003), pp. 103–128.
  • A.R. Ward and P.W. Glynn, Properties of the reflected Ornstein-Uhlenbeck process, Queueing Syst.44 (2003), pp. 109–123.
  • A.R. Ward and P.W. Glynn, A diffusion approximation for a GI/GI/1 queue with balking or reneging, Queueing Syst. 50 (2005), pp. 371–400.
  • X. Yang, X. Li, G. Ren, Y. Wang and L. Bo, Modeling the exchange rates in a target zone by reflected Ornstein-Uhlenbeck process, SSRN Electron. J. (2012), 10.2139/ssrn.2107686.
  • D. Ylvisaker, A note on the absence of tangencies in Gaussian sample paths, Ann. Math. Stat. 39 (1968), pp. 261–262.
  • M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probability Theory and Related Fields 111 (1998), pp. 333–374.
  • S.Q. Zhang and C. YuanStochastic differential equations driven by fractional Brownian motion with locally Lipschitz drift and their implicit Euler approximation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2020), pp. 1–27.
  • J. Zhu, Applications of Fourier Transform to Smile Modeling, Springer, Berlin Heidelberg, 2010.