3,891
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Fatigue damage criteria classification, modelling developments and trends for welded joints in marine structures

Pages 787-808 | Received 20 Dec 2017, Accepted 26 Mar 2018, Published online: 29 May 2018

References

  • Adepipe O, Brennan F, Kolios A. 2015. Corrosion fatigue crack growth in offshore wind monopile steel HAZ material. In: Soraes CG, Shenoi RA, editors. Analysis and design of marine structures V. London: CRC Press; p.–207–212. ISBN: 978-1-138-02789-3.
  • Adepipe O, Brennan F, Kolios A. 2016. A relative crack opening time correlation for corrosion fatigue crack growth in offshore structures. Fatigue Fract Eng Mater Struct. 39:395–411. doi: 10.1111/ffe.12364
  • Amiri-Rad A, Maskayekhi M, Van der Meer F, Hadavinia H. 2015. A two-scale damage model for high cycle fatigue delamination in laminated composites. Compos Sci Technol. 120:32–38. doi: 10.1016/j.compscitech.2015.10.010
  • Barsoum Z, Lundbäck A. 2009. Simplified FE welding simulation of fillet welds–3D effects on the formation of residual stresses. Eng Failure Anal. 16:2281–2289. doi: 10.1016/j.engfailanal.2009.03.018
  • Bathias C. 2014. Fatigue limit in metals. Hoboken (NJ): Wiley-ISTE. ISBN: 978-1-848-21476-7.
  • Brandt U, Lawrence FV, Sonsino CM. 2001. Fatigue crack initiation and growth in AlMg4.5Mn butt weldments. Fatigue Fract Eng Mater Struct. 24:117–126. doi: 10.1046/j.1460-2695.2001.00372.x
  • Carpinteri A, Spagnoli A, Vantadori S. 2009. Multiaxial fatigue life estimation in welded joints using the critical plane approach. Int J Fatigue. 31:188–196. doi: 10.1016/j.ijfatigue.2008.03.024
  • Chakherlou TN, Taghizadeh H, Mirzajanzadeh M, Aghdam AB. 2012. On the prediction of fatigue life in double shear lap joints including interference fitted pin. Eng Fract Mech. 96:340–354. doi: 10.1016/j.engfracmech.2012.08.023
  • Charkaluk E, Constantinescu A, Maïtournam H, Dang Van K. 2009. Revisiting the Dang Van criterion. Procedia Eng. 1:143–146. doi: 10.1016/j.proeng.2009.06.033
  • Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R. 2011. Stress analysis and fatigue of welded structures. Weld World. 55:2–21. doi: 10.1007/BF03321303
  • Cristofori A, Susmel L, Tovo R. 2008. A stress invariant based criterion to estimate fatigue damage under multiaxial loading. Int J Fatigue. 30:1646–1658. doi: 10.1016/j.ijfatigue.2007.11.006
  • Crossland B. 1956. Effect of large hydrostatic stress on the torsional fatigue strength of an alloy steel. In Proceeding of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers; London, United Kingdom. p. 138–149.
  • Cui W. 2002. A state-of-the-art review on fatigue life prediction methods for metal structures. J Marine Sci Technol. 7:43–56. doi: 10.1007/s007730200012
  • Cui W, Huang X, Wang F. 2014. Towards a unified fatigue life prediction method for marine structures. Berlin: Springer. ISBN: 978-3-642-41830-3.
  • Cui W, Wang F, Huang X. 2011. A unified fatigue life prediction method for marine structures. Marine Struct. 24:153–181. doi: 10.1016/j.marstruc.2011.02.007
  • Dang Van K. 1993. Macro-micro approach in high-cycle multiaxial fatigue. In: McDowell DL, Ellis R, editors. Proceedings of the Advances in Multiaxial Fatigue, ASTM STP 1191. Philadelphia (PA): ASTM; p. 120–130.
  • Dang Van K. 1999. Multiaxial fatigue limit criterion of metals: a mesoscopic approach. In: Dang Van K, Papadopoulos IV., editors High-cycle metal fatigue, from theory to applications. CISM courses and lectures No. 392. International Centre for Mechanical Sciences. Springer-Verlag Wien GmbH; p. 57–88. ISBN: 978-3-211-831441.
  • Dang Van K, Bignonnet A, Fayard JL, Janosch JJ. 2001. Assessment of welded structures by a local multiaxial fatigue approach. Fatigue Fract Eng Mater Struct. 24:369–376. doi: 10.1046/j.1460-2695.2001.00399.x
  • Danzer R, Supancic P, Pascual J, Lube T. 2007. Fracture statistics of ceramics–Weibull statistics and deviations from Weibull statistics. Eng Fract Mech. 74:2919–2932. doi: 10.1016/j.engfracmech.2006.05.028
  • Darcis P, Lassen T, Recho N. 2006. Fatigue behaviour of welded joints part 2–physical modelling of the fatigue process. Weld J. 85:19s–26s.
  • Den Besten JH. 2015. Fatigue resistance of welded joints in aluminium high-speed craft: a total stress concept [PhD thesis]. Delft: Delft University of Technology.
  • DNV-GL classification note 30.7 (2014). Fatigue assessment of ship structures.
  • Donald KJ, Paris PC. 1999. An evaluation of ΔKeff estimation procedures on 6061-T6 and 2024-T3 aluminium alloys. Int J Fatigue. 21:47–57. doi: 10.1016/S0142-1123(99)00055-9
  • Dong P. 2001. A structural stress definition and numerical implementation for fatigue analysis of welded joints. Int J Fatigue. 23:865–876. doi: 10.1016/S0142-1123(01)00055-X
  • Dong P. 2003. A robust structural stress method for fatigue analysis of ship structures. In: Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2003; Jun 8–13; Cancun, Mexico: ASME.
  • Dong P. 2004. The mesh-insensitive structural stress and master S-N curve method for ship structures. In: Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2004; Aug 30--Sep 2; Vancouver, Canada. Houston (TX): ASME.
  • Dong P. 2008. Length scale of secondary stresses in fracture and fatigue. Int J Pressure Vessels Pip. 85:128–143. doi: 10.1016/j.ijpvp.2007.10.005
  • Dong P, Hong JK. 2001. Residual stresses, notch stress and stress intensities at welds: an unified assessment procedure with self-consistency. In: Proceeding of the 16th International Conference on Structural Mechanics in Reactor Technology, SMiRT 16; Washington, DC.
  • Dong P, Hong JK. 2004. The master S-N curve approach to fatigue evaluation of offshore and marine structures. In: ASME, editor. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2004. Vancouver, British Columbia, Canada.
  • Dong P, Hong JH. 2006. A robust structural stress parameter for evaluation of multiaxial fatigue of weldments. J ASTM Int. 3:100348. doi: 10.1520/JAI100348
  • Dong P, Hong JK, Cao Z. 2003. Stresses and stress intensities at notches: ‘anomalous crack growth’ revisited. Int J Fatigue. 25:811–825. doi: 10.1016/S0142-1123(03)00130-0
  • Dong P, Hong JK, Cao Z. 2004. A robust K estimation scheme using mesh-insensitive structural stresses. Weld World. 48:28–39.
  • Dong P, Hong JK, De Jesus AMP. 2007. Analysis of recent fatigue data using the structural stress procedure in ASME Div. J Press Vessel Technol. 129:355–362. doi: 10.1115/1.2748818
  • Dong P, Pei X, Xing S, Kim MH. 2014. A structural strain method for low-cycle fatigue evaluation of welded components. Int J Press Vessel Pip. 119:39–51. doi: 10.1016/j.ijpvp.2014.03.003
  • Dong P, Wei Z, Hong ZW. 2010. A path-dependent cycle counting method for variable-amplitude multi0axial loading. Int J Fatigue. 32:720–734. doi: 10.1016/j.ijfatigue.2009.10.010
  • Elber W. 1971. The significance of fatigue crack closure. In: ASTM, editor. Proceedings of the Damage tolerance in aircraft structures, ASTM STP 486, American Society for Testing and Materials. p. 230–242.
  • El Haddad MH, Smith KN, Topper TH. 1979. Fatigue crack propagation at short cracks. J Eng Mater Technol. 101:42–46. doi: 10.1115/1.3443647
  • Endo M, McEvily AJ. 2007. Prediction of the behaviour of small fatigue cracks. Mat Sci Eng. 468–470:51–58. doi: 10.1016/j.msea.2006.09.084
  • Erny C, Thevenet D, Cognard J, Körner M. 2012. Fatigue life prediction of welded ship details. Mar Struct. 25:13–32. doi: 10.1016/j.marstruc.2011.10.001
  • Eurocode 3. Design of steel structures–part 1-9: fatigue. 2006. EN-1993-1-9. Brussels: CEN.
  • Eurocode 9. Design of aluminium structures–part 1-3: structures susceptible to fatigue 2007. EN-1999-1-3. Brussels: CEN.
  • Ferro P, Berto F, Lazzarin P. 2005. Generalised stress intensity factors due to steady and transient thermal loads with applications to welded joints. Fatigue Fract Eng Mater Struct. 29:440–453. doi: 10.1111/j.1460-2695.2006.01015.x
  • Fricke W. 2002. Recommended hot-spot analysis procedure for structural details of ships and FPSO's based on round-robin FE analyses. Int J Offshore Polar Eng. 12:40–47.
  • Fricke W. 2003. Fatigue analysis of welded joints: state of development. Mar Struct. 16:185–200. doi: 10.1016/S0951-8339(02)00075-8
  • Fricke W. 2015. Recent developments and future challenges in fatigue strength assessment of welded joints. Proc Inst Mech Eng. 229:1224–1239.
  • Fricke W, Bollero A, Chirica I, Garbatov Y, Jancart F, Kahl A, Remes H, Rizzo CM, Von Selle H., Urban A, et al. 2008. Round robin study on structural hot-spot and effective notch stress analysis. Ships Offshore Struct. 3:335–345. doi: 10.1080/17445300802371261
  • Fricke W, Codda M, Feltz O, Garbatov Y, Remes H, Risso G, Rizzo C, Romanoff J. 2013. Round robin study on local stress and fatigue assessment of lap joints and doubler plates. Ships Offshore Struct. 8:621–627. doi: 10.1080/17445302.2012.762727
  • Fricke W, Paetzold H. 2010. Full-scale fatigue tests of ship structures to validate the S-N approaches for fatigue strength assessment. Mar Struct. 23:115–130. doi: 10.1016/j.marstruc.2010.01.004
  • Frost NE, Dugdale DS. 1958. The propagation of fatigue cracks in sheet specimens. J Mech Phys Solids. 6:92–110. doi: 10.1016/0022-5096(58)90018-8
  • Gavras AG, Lados DA, Donald JK. 2013. A unified method of design for fatigue crack growth resistance in structural materials. Int J Fatigue. 47:58–70. doi: 10.1016/j.ijfatigue.2012.07.009
  • Guedes Soares C, Garbatov Y, Zayed A, Wang G. 2009. Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corros Sci. 51:2014–2026. doi: 10.1016/j.corsci.2009.05.028
  • Glinka G. 1985. Energy density approach to calculation of inelastic strain-stress near notches and cracks. Eng Fract Mech. 22:485–508. doi: 10.1016/0013-7944(85)90148-1
  • Gough HJ, Pollard HV. 1935. The strength of metals under combined alternating stresses. Proc Inst Mech Eng. 131:3–103. doi: 10.1243/PIME_PROC_1935_131_008_02
  • Hertel O, Vormwald M. 2014. Multiaxial fatigue assessment based on a short crack growth concept. Theor Appl Fract Mech. 73:17–26. doi: 10.1016/j.tafmec.2014.06.010
  • Hobbacher AF. 2009. The new IIW recommendations for fatigue assessment of welded joints and components–a comprehensive code recently updated. Int J Fatigue. 31:50–58. doi: 10.1016/j.ijfatigue.2008.04.002
  • Hobbacher AF. 2010. New developments at the recent update of the IIW recommendations for fatigue of welded joints and components. Steel Constr. 4:231–242. doi: 10.1002/stco.201010030
  • Hobbacher AF. 2016. Recommendations for fatigue design of welded joints and components. 2nd ed. Switzerland: Springer International. ISBN: 978-3319237565.
  • Hofmann F, Bertolino G, Constantinescu A, Ferjani M. 2009. Numerical exploration of the Dang Van high cycle fatigue criterion: application to gradient effects. J Mech Mater Struct. 4:293–308. doi: 10.2140/jomms.2009.4.293
  • Hong JK. 2010. Evaluation of weld root failure using Battelle structural stress method. In: ASME, editor. Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2010, Shanghai, China.
  • Hong JK, Forte TP. 2014. Fatigue evaluation procedures for multiaxial loading in welded structures using Battelle structural stress approach. In: ASME, editor. Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2014; San Francisco (CA): ASME.
  • Huang X, Moan T, Cui W. 2009. A unique crack growth rate curve method for fatigue life prediction of steel structures. Ships Offshore Struct. 4:165–173. doi: 10.1080/17445300902732370
  • Huffman PJ. 2016. A strain energy based damage model for fatigue crack initiation and growth. Int J Fatigue. 88:197–204. doi: 10.1016/j.ijfatigue.2016.03.032
  • Jakubowski M. 2014. Influence of pitting corrosion on fatigue and corrosion fatigue of ship structures–part I. Pol Maritime Res. 21:62–69.
  • Jakubowski M. 2015. Influence of pitting corrosion on fatigue and corrosion fatigue of ship and offshore structures–part II. Pol Maritime Res. 22:57–66.
  • Janssen M, Zuidema J, Wanhill RJH. 2002. Fracture mechanics. 2nd ed. Delft: Delft University Press. ISBN: 90-407-2221-8.
  • Jiang C, Liu ZC, Wang XG, Zhang Z, Long XY. 2016. A structural stress-based critical plane method for multiaxial fatigue life estimation in welded joints. Fatigue Fract Eng Mater Struct. 39:372–383. doi: 10.1111/ffe.12369
  • Jones R, Chen B, Pitt S. 2007. Similitude: fatigue cracking in steels. Theor Appl Fract Mech. 48:161–168. doi: 10.1016/j.tafmec.2007.05.007
  • Jones R, Molent L, Pitt S. 2007. Crack growth of physically small cracks. Int J Fatigue. 29:1658–1667. doi: 10.1016/j.ijfatigue.2007.01.031
  • Kim JS, Kim C, Jin TE, Dong P. 2006. Mean load effect on fatigue of welded joints using structural stress and fracture mechanics approach. Nucl Eng Technol. 38:277–284.
  • Kim Y, Oh JS, Jeon SH. 2015. Novel hot spot stress calculations for welded joints using 3D solid finite elements. Mar Struct. 44:1–18. doi: 10.1016/j.marstruc.2015.07.004
  • Kondo Y. 1989. Prediction of fatigue crack initiation life based on pit growth. Corrosion. 45:7–11. doi: 10.5006/1.3577891
  • Krebs J, Kassner M. 2007. Influence of welding residual stresses on fatigue design of welded joints and components. Weld World. 51:54–68. doi: 10.1007/BF03266586
  • Krupp U. 2007. Fatigue crack propagation in metals and alloys. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. ISBN: 978-3-527-31537-6.
  • Kujawski D. 2001. A fatigue crack driving force parameter with load ratio effects. Int J Fatigue. 23:239–246. doi: 10.1016/S0142-1123(01)00158-X
  • Lassen T. 1990. The effect of the welding process on the fatigue crack growth. Weld J. 69:75s–81s.
  • Lassen T, Recho N. 2009. Proposal for a more accurate physically based S-N curve for welded steel joints. Int J Fatigue. 31:70–78. doi: 10.1016/j.ijfatigue.2008.03.032
  • Lassen T, Darcis P, Recho N. 2005. Fatigue behavior of welded joints part 1 – statistical methods for fatigue life prediction. Weld J. 84:183s–187s.
  • Lazzarin P, Filippi S. 2006. A generalized stress intensity factor to be applied to rounded V-shaped Notches. Int J Solids Struct. 43:2461–2478. doi: 10.1016/j.ijsolstr.2005.03.007
  • Lazzarin P, Livieri P. 2001. Notch stress intensity factors and fatigue strength of aluminium and steel welded joints. Int J Fatigue. 23:225–232. doi: 10.1016/S0142-1123(00)00086-4
  • Lazzarin P, Sonsino CM, Zambardi R. 2004. A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube-to-flange joints subjected to combined loadings. Fatigue Fract Eng Mater Struct. 27:127–140. doi: 10.1111/j.1460-2695.2004.00733.x
  • Lazzarin P, Tovo R. 1998. A notch intensity factor approach to the stress analysis of welds. Fatigue Fract Eng Mater Struct. 21:1089–1103. doi: 10.1046/j.1460-2695.1998.00097.x
  • Lazzarin P, Zambardi R. 2001. A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches. Int J Fract. 112:275–298. doi: 10.1023/A:1013595930617
  • Lazzarin P, Zambardi R. 2002. The equivalent strain energy density approach reformulated and applied to sharp V-shaped notches under localized and generalized plasticity. Fatigue Fract Eng Mater Struct. 25:917–928. doi: 10.1046/j.1460-2695.2002.00543.x
  • Lemaitre J, Chaboche JL. 1994. Mechanics of solid materials. 1st ed. Cambridge (UK): Cambridge University Press. ISBN: 0521477581.
  • Lemaitre J, Sermage JP, Desmorat R. 1999. A two scale damage concept applied to fatigue. Int J Fract. 97:67–81. doi: 10.1023/A:1018641414428
  • Liu G, Liu Y, Huang Y. 2014. A novel structural stress approach for multi-axial fatigue strength assessment of welded joints. Int J Fatigue. 63:171–182. doi: 10.1016/j.ijfatigue.2014.01.022
  • Liu Y, Mahadevan S. 2009. Fatigue limit prediction of notched components using short crack growth theory and an asymptotic interpolation method. Eng Fract Mech. 76:2317–2331. doi: 10.1016/j.engfracmech.2008.06.006
  • Livieri P, Lazzarin P. 2005. Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int J of Fracture. 133:247–276. doi: 10.1007/s10704-005-4043-3
  • Lotsberg I. 2009. Assessment of design criteria for fatigue cracking from weld toes subjected to proportional loading. Ships Offshore Struct. 4:175–187. doi: 10.1080/17445300902733998
  • Lotsberg I. 2016. Fatigue design of marine structures. New York (NY): Cambridge University Press. ISBN: 978-1107121331.
  • Lotsberg I, Landet E. 2005. Fatigue capacity of side longitudinals in floating structures. Mar Struct. 18:25–42. doi: 10.1016/j.marstruc.2005.08.002
  • Maddox SJ. 1975. The effect of mean stress on fatigue crack propagation; a literature review. Int J Fract. 11:389–408. doi: 10.1007/BF00038890
  • Maddox SJ. 2003. Review of fatigue assessment procedures for welded aluminium structures. Int J Fatigue. 25:1359–1378. doi: 10.1016/S0142-1123(03)00063-X
  • Marquis G, Samuelsson J. 2005. Modelling of fatigue life assessment of complex structures. Materialwissenschaft und Werkstofftechnik. 36:678–684. doi: 10.1002/mawe.200500938
  • Marquis GB, Socie DF. 2003. Multiaxial fatigue. In: Ritch RO, Murakami Y, editors. Comprehensive structural integrity, fracture of materials from nano to macro (voume 4: cyclic loading and fatigue). Elsevier. Chapter 9; p. 221–252.
  • McEvily AJ. 1983. On the quantitative analysis of fatigue crack propagation. In: Proceedings of the Fatigue Mechanisms: Advances in Quantitative Measurements of Physical Damage, STM STP 811. American Society for Testing and Materials (ASTM). p. 283–312.
  • McEvily AJ, Ishihara S. 2001. On the dependence of the rate of fatigue crack growth on the σ(2a) parameter. Int J Fatigue. 23:115–120. doi: 10.1016/S0142-1123(00)00080-3
  • McEvily AJ, Endo M, Murakami Y. 2003. On the area relationship and the short fatigue crack threshold. Fatigue Fract Eng Mater Struct. 26:269–278. doi: 10.1046/j.1460-2695.2003.00636.x
  • McEvily AJ, Minakawa K. 1984. Crack closure and the growth of short and long fatigue cracks. Scripta Metallurgica. 18:71–76. doi: 10.1016/0036-9748(84)90092-9
  • Mei J, Dong P. 2016. A new path-dependent fatigue damage model for non-proportional multi-axial loading. Int J Fatigue. 90:210–221. doi: 10.1016/j.ijfatigue.2016.05.010
  • Meneghetti G, Campagnolo A, Berto F. 2015. Fatigue strength assessment of partial and full-penetration steel and aluminium butt-welded joints according to the peak stress method. Fatigue Fract Eng Mater Struct. 38:1419–1431. doi: 10.1111/ffe.12342
  • Meneghetti G, Lazzarin P. 2006. Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components. Fatigue Fract Eng Mater Struct. 30:95–106. doi: 10.1111/j.1460-2695.2006.01084.x
  • Meneghetti G, Lazzarin P. 2011. The peak stress method for fatigue strength assessment of welded joints with weld toe or weld root failures. Weld World. 55:22–29. doi: 10.1007/BF03321304
  • Mikheevskiy S, Glinka G, Cordes T. 2015. Total life approach for fatigue estimation of welded structures. Proceedings of 3rd International Conference on Material and Component Performance under Variable Amplitude Loading, VAL2015. Procedia Eng. 101:177–184. doi: 10.1016/j.proeng.2015.02.023
  • Mohammadi M, Zehsaz M, Hassanifard S, Rahmatfam A. 2016. An evaluation of total fatigue life prediction of a notched shaft subjected to cyclic bending load. Eng Fract Mech. 166:128–138. doi: 10.1016/j.engfracmech.2016.08.027
  • Molent L, Jones R, Barter S, Pitt S. 2006. Recent developments in fatigue crack growth assessment. Int J Fatigue. 28:1759–1768. doi: 10.1016/j.ijfatigue.2006.01.004
  • Montesano J, Chu H, Sing CV. 2016. Development of a physics-based multi-scale progressive damage model for assessing the durability of wind turbine blades. Compos Struct. 141:50–62. doi: 10.1016/j.compstruct.2016.01.011
  • Murakami S. 2012. Continuum damage mechanics: a continuum damage mechanics approach to the analysis of damage and fracture. Dordrecht: Springer. ISBN: 978-94-007-2666-6.
  • Neuber H. 1937, 1958, 1985, 2001. Kerbspannungslehre (4. Aufl.). Berlin: Springer-Verlag. ISBN: 3-540-67657-0.
  • Niemi E, Fricke W, Maddox SJ. 2006. Fatigue analysis of welded components–designer's guide to the structural hot spot stress approach. Abington (PA): Woodhead Publishing Limited. ISBN: 978-1-84569-124-0.
  • Noroozi AH, Glinka G, Lambert S. 2005. A two parameter driving force for fatigue crack growth analysis. Int J Fatigue. 27:1277–1296. doi: 10.1016/j.ijfatigue.2005.07.002
  • Obrtlík K, Man J, Polák J. 2004. Effect of mean stress on short crack growth in fatigued 316L stainless steel. In: Proceedings of the 15th European Conference on Fracture, ECF15; Stockholm, Sweden.
  • Papadopoulos IV, Davoli P, Gorla C, Filippini M, Bernasconi A. 1997. A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatigue. 19:219–235. doi: 10.1016/S0142-1123(96)00064-3
  • Paris PC, Erdogan F. 1963. Critical analysis of crack growth propagation laws. J Basic Eng. 85:528–534. doi: 10.1115/1.3656900
  • Pedersen MM. 2016. Multiaxial fatigue assessment of welded joints using the notch stress approach. Int J Fatigue. 83:269–279. doi: 10.1016/j.ijfatigue.2015.10.021
  • Peterson RE. 1938. Methods of correlating data from fatigue tests of stress concentration specimens. In: Stephen Timoshenko 60th anniversary volume. New York (NY): The Macmillan Company; p. 179.
  • Poutiainen I, Marquis G. 2004. A single-point structural stress assessment procedure for load-carrying fillet welds. In: Proceedings of theIIW document XIII-2013-04, International Institute of Welding.
  • Poutiainen I, Marquis G. 2006. A fatigue assessment method based on weld stress. Int J Fatigue. 28:1037–1046. doi: 10.1016/j.ijfatigue.2005.11.007
  • Pyttel B, Schwerdt D, Berger C. 2011. Very high cycle fatigue–is there a fatigue limit? Int J Fatigue. 33:49–58. doi: 10.1016/j.ijfatigue.2010.05.009
  • Radaj D. 2014. State-of-the-art review on extended stress intensity factor concepts. Fatigue Fract Eng Mater Struct. 37:1–28. doi: 10.1111/ffe.12120
  • Radaj D. 2015. State-of-the-art review on the local strain energy density concept and its relation to the J-integral and peak stress method. Fatigue Fract Eng Mater Struct. 38:2–28. doi: 10.1111/ffe.12231
  • Radaj D, Lazzarin P, Berto F. 2013. Generalised Neuber concept of fictitious notch rounding. Int J Fatigue. 51:105–115. doi: 10.1016/j.ijfatigue.2013.01.005
  • Radaj D, Sonsino CM, Fricke W. 2006. Fatigue assessment of welded joints by local approaches. 2nd ed. Cambridge (UK): Woodhead Publishing Limited. ISBN: 978-1855739482.
  • Radaj D, Vormwald M. 2013. Advanced methods of fatigue assessment. 1st ed. Berlin: Springer.
  • Ritchie RO, Yu W, Holm DK, Blom AF. 1988. Development of fatigue crack closure with the extension of long and short cracks in aluminium alloy 2124: a comparison of experimental and numerical results. In: Proceedings of the Mechanics of Fatigue Crack Closure, ASTM STP 982. American Society for Testing and Materials (ASTM). p. 300–316. doi: 10.1520/STP27217S
  • Rizzo CM. 2011. Application of advanced notch stress approaches to assess fatigue strength of ship structural details: literature review. Hamburg-Harburg: Schriftenreihe Schiffbau. ISBN: 978-38922065 52.
  • Rizzo CM, Fricke W. 2013. Fatigue assessment of bulb stiffener joints according to local approaches. Ships Offshore Struct. 8:73–83. doi: 10.1080/17445302.2011.647805
  • Rother K, Fricke W. 2016. Effective notch stress approach for welds having low stress concentration. Int J Press Vessel Pip. 147:12–20. doi: 10.1016/j.ijpvp.2016.09.008
  • Rozumek D, Macha E. 2009. A survey of failure criteria and parameters in mixed-mode fatigue crack growth. Mater Sci. 45:190–210. doi: 10.1007/s11003-009-9179-2
  • Sadananda K, Vasudevan AK. 1998. Short crack growth and internal stresses. Int J Fatigue. 19(supp. 1):s99–s108.
  • Sadananda K, Vasudevan AK. 2004. Crack tip driving forces and crack growth representation under fatigue. Int J Fatigue. 26:39–47. doi: 10.1016/S0142-1123(03)00105-1
  • Schijve J. 1988. Fatigue crack closure: observations and technical significance. In: Proceedings of the Mechanics of Fatigue Crack Closure, ASTM STP 982, American Society for Testing and Materials. p. 5–34. doi: 10.1520/STP27198S
  • Schijve J. 2009. Fatigue of structures and materials. 2nd ed. Berlin: Springer. ISBN: 978-402068089.
  • Schijve J. 2012. Fatigue predictions of welded joints and the effective notch stress concept. Int J Fatigue. 45:31–38. doi: 10.1016/j.ijfatigue.2012.06.016
  • Sehitoglu H, Gall K, García AM. 1996. Recent advances in fatigue crack growth modelling. Int J Fatigue. 80:165–192.
  • Shen W, Yan R, Barltrop N, Liu E, Song L. 2016. A method of determining structural stress for fatigue strength evaluation of welded joints based on notch stress strength theory. Int J Fatigue. 90:87–98. doi: 10.1016/j.ijfatigue.2016.04.014
  • Silitonga S, Maljaars J, Soetens F, Snijder HH. 2013. Survey on damage mechanics models for fatigue life prediction. Heron. 58:25–54.
  • Smith RN, Watson P, Tupper TH. 1970. A stress-strain parameter for the fatigue of metals. J Mater. 5:767–778.
  • Socie DF, Morrow J, Chen W. 1979. A procedure for estimating the total fatigue life of notched and cracked members. Eng Fract Mech. 11:851–859. doi: 10.1016/0013-7944(79)90142-5
  • Sonsino CM. 1997. Fatigue behaviour of welded components under complex elasto-plastic multiaxial deformations. Brussels: ECCS. EU-report no: 16024.
  • Sonsino CM. 2009. A consideration of allowable equivalent stresses for fatigue design of welded joints according to the notch stress concept with the reference radii rref = 1.00 and 0.05 mm. Weld World. 53:(3–4):R64–R75. doi: 10.1007/BF03266705
  • Sonsino CM, Fricke W, de Bruyne F, Hoppe A, Ahmadi A, Zhang G. 2012. Notch stress concepts for the fatigue assessment of welded joints–background and applications. Int J Fatigue. 34:2–16. doi: 10.1016/j.ijfatigue.2010.04.011
  • Sonsino CM, Kueppers M. 2001. Multiaxial fatigue of welded joints under constant and variable amplitude loadings. Fatigue Fract Eng Mater Struct. 24:309–327. doi: 10.1046/j.1460-2695.2001.00393.x
  • Sonsino CM, Lagoda T. 2004. Assessment of multiaxial fatigue behaviour of welded joints under combined bending and torsion by application of a fictitious notch radius. Int J Fatigue. 26:265–279. doi: 10.1016/S0142-1123(03)00143-9
  • Spagnoli A. 2005. Self-similarity and fractals in the Paris range of fatigue crack growth. Mech Mater. 37:519–529. doi: 10.1016/j.mechmat.2004.04.003
  • Sumi Y, Inoue T. 2011. Multi-scale modelling of fatigue crack propagation applied to random sequence of clustered loading. Mar Struct. 24:117–131. doi: 10.1016/j.marstruc.2011.02.003
  • Susmel L. 2008. The theory of critical distances: a review of its applications in fatigue. Eng Fract Mech. 75:1706–1724. doi: 10.1016/j.engfracmech.2006.12.004
  • Susmel L, Lazzarin P. 2002. A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment. Fatigue Fract Eng Mater Struct. 25:63–78. doi: 10.1046/j.1460-2695.2002.00462.x
  • Susmel L, Taylor D. 2007. A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime. Fatigure Fract Eng Mater Struct. 30:567–581. doi: 10.1111/j.1460-2695.2007.01122.x
  • Taylor D. 2007. The theory of critical distances; a new perspective in fracture mechanics. Oxford: Elsevier. ISBN: 978-0-08-044478-9.
  • Teng T, Chang P. 2004. Effect of residual stresses on the fatigue crack initiation life for butt-welded joints. J Mater Process Technol. 145:325–335. doi: 10.1016/j.jmatprotec.2003.07.012
  • Todinov MT. 2009. Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws? Int J Solids Struct. 46:887–901. doi: 10.1016/j.ijsolstr.2008.09.033
  • Van Lieshout PL, den Besten JH, Kaminski ML. 2016. Comparative study of multiaxial fatigue methods applied to welded joints in marine structures. Frattura ed Integratà Strutturale. 37:173–192.
  • Van Lieshout PL, den Besten JH, Kaminski ML. 2017. Multiaxial fatigue assessment of welded joints in marine structures. International Shipbuilding Progress. doi:10.3233/ISP-170141.
  • Verreman Y, Nie B. 1996. Early development of fatigue cracking at manual fillet welds. Fatigue Fract Eng Mater Struct. 19:669–681. doi: 10.1111/j.1460-2695.1996.tb01312.x
  • Walker K. 1970. The effects of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 Aluminium. In: Proceedings of the Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462. American Society for Testing and Materials (ASTM). p. 1–14.
  • Wei Z, Dong P. 2011. A rapid path-length searching procedure for multi-axial fatigue cycle counting. Fatigue Fract Eng Mater Struct. 35:556–571. doi: 10.1111/j.1460-2695.2012.01649.x
  • Weng L, Zhang J, Kalnaus S, Feng M, Jiang Y. 2013. Corrosion fatigue crack growth of AISI 4340 steel. Int J Fatigue. 48:156–164. doi: 10.1016/j.ijfatigue.2012.10.015
  • Wormsen A, Sjödin B, Härkegård G, Fjeldstad A. 2007. Non-local stress approach for fatigue assessment based on weakest-link theory and statistics of extremes. Fatigue Fract Eng Mater Struct. 30:1214–1227. doi: 10.1111/j.1460-2695.2007.01190.x
  • Xiao ZG, Yamada K. 2004. A method of determining geometric stress for fatigue strength evaluation of steel welded joints. Int J Fatigue. 26:1277–1293. doi: 10.1016/j.ijfatigue.2004.05.001
  • Xing S, Dong P, Threstha A. 2016. Analysis of fatigue failure mode transition in load-carrying fillet-welded connections. Mar Struct. 46:102–126. doi: 10.1016/j.marstruc.2016.01.001
  • Xu T, Bea R. 1997. Load shedding of fatigue fracture in ship structures. Mar Struct. 10:49–80. doi: 10.1016/S0951-8339(97)80001-Q
  • Zerbst U, Madia M. 2015. Fracture mechanics based assessment of the fatigue strength: approach for the determination of the initial crack size. Fatigue Fract Eng Mater Struct. 38:1066–1075. doi: 10.1111/ffe.12288
  • Zhang Y, Maddox SJ. 2009. Fatigue life prediction for toe ground welded joints. Int J Fatigue. 31:1124–1136. doi: 10.1016/j.ijfatigue.2009.01.003