114
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory

&
Pages 501-509 | Received 18 Apr 2018, Accepted 06 Aug 2018, Published online: 12 Sep 2018

References

  • Akinshilo AT, Olofinkua JO, Olaye O. 2017. Flow and heat transfer analysis of the sodium alginate conveying copper nanoparticles between two parallel plates. J Appl Comput Mech. 3:258–266.
  • Akinshilo AT, Sobamowo GM. 2017. Perturbation solutions for the study of MHD blood as a third grade nanofluid transporting gold nanoparticles through a porous channel. J Appl Comput Mech. 3:103–113.
  • Amabili M, Karagiozis K, Païdoussis MP. 2009. Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid. Int J Non-Linear Mech. 44:276–289. doi: 10.1016/j.ijnonlinmec.2008.11.006
  • Chen G, Du H. 1997. The Galerkin method for initial value problems based on the principle of total virtual action. J Sound Vib. 203:457–472. doi: 10.1006/jsvi.1996.0852
  • Demir MH, Yesildirek A, Yigit F. 2015. Control of a cantilever pipe conveying fluid using neural network, modeling, simulation, and applied optimization (ICMSAO). 6th int conf; May 27–29.
  • Drozdov AD. 1997. Stability of a viscoelastic pipe filled with a moving fluid. ZAMM – J Appl Math Mech. 77:689–700. doi: 10.1002/zamm.19970770908
  • Emir Sakman L, Uzal E. 2017. Exact solution for the vibrations of an arbitrary plane curved pipe conveying fluid. ZAMM – J Appl Math Mech. 97:422–432. doi: 10.1002/zamm.201600074
  • Fazzolari FA, Carrera E. 2014. Refined hierarchical kinematics quasi-3D ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core. J Sound Vib. 333:1485–1508. doi: 10.1016/j.jsv.2013.10.030
  • Gavili A, Dallali Isfahani T, Sabbaghzadeh J. 2012. The variation of heat transfer in a two-sided lid-driven differentially heated square cavity with nanofluids containing carbon nanotubes for physical properties of fluid dependent on temperature. Int J Numeric Meth Fluids. 68:302–323. doi: 10.1002/fld.2507
  • Gu J, Dai B, Wang Y, Li M, Duan M. 2017. Dynamic analysis of a fluid-conveying pipe under axial tension and thermal loads. Ships Offshore Struct. 12:262–275. doi: 10.1080/17445302.2015.1135564
  • Karagiozis KN, Amabili M, Païdoussis MP, Misra AK. 2005. Nonlinear vibrations of fluid-filled clamped circular cylindrical shells. J Fluids Struct. 21:579–595. doi: 10.1016/j.jfluidstructs.2005.07.020
  • Lamas B, Abreu B, Fonseca A, Martins N, Oliveira M. 2013. Numerical analysis of percolation formation in carbon nanotube based nanofluids. Int J Numeric Meth Fluids. 95:257–270. doi: 10.1002/nme.4510
  • Li P, Zheng Y, Wu Y, Qu P, Yang R, Li M, Wang Y. 2016. Multifunctional liquid-like graphene@Fe3O4 hybrid nanofluid and its epoxy nanocomposites. Concrete Compos. 37:3474–3485.
  • Liew KM, Lei ZX, Yu JL, Zhang LW. 2014. Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput Meth Appl Mech Eng. 268:1–17. doi: 10.1016/j.cma.2013.09.001
  • Narahari M, Alaparthi N, Pop I. 2017. Exact analysis of the transient free convection flow of nanofluids between two vertical parallel plates in the presence of radiation. Canad J Chemi Eng. 95:2186–2198. doi: 10.1002/cjce.22872
  • Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN, Soares CMM. 2013. Free vibration of functionally graded shells by a higherorder shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Europ J Mech A/Solids. 37:24–34. doi: 10.1016/j.euromechsol.2012.05.005
  • Ogunmola BY, Akinshilo AT, Sobamowo MG. 2016. Perturbation solutions for Hagen-Poiseuille flow and heat transfer of third grade fluid with temperature-dependent viscosities and internal heat generation. Int J Eng Math. 22:1–12. doi: 10.1155/2016/8915745
  • Pradyumna S, Bandyopadhyay JN. 2008. Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J Sound Vib. 318:176–192. doi: 10.1016/j.jsv.2008.03.056
  • Reddy JN. 1984. A simple higher-order theory for laminated composite plates. J Appl Mech. 51:745–752. doi: 10.1115/1.3167719
  • Sheng GG, Wang X. 2010. Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads. Compos Struct. 93:162–170. doi: 10.1016/j.compstruct.2010.06.004
  • Sobamowo MG, Akinshilo AT. 2017a. Double diffusive magnetohydrodynamic squeezing flow of nanofluid between two parallel disks with slip and temperature jump boundary conditions. Appl Comput Mech. 11. doi:10.24132/acm.2017.367.
  • Sobamowo MG, Akinshilo AT. 2017b. On the analysis of squeezing flow of nanofluid between two parallel plates under the influence of magnetic field. Alexand Eng J. doi:10.1016/j.aej.2017.07.001.
  • Viswanatha Sharma K, Azmi WH, Kamal S, Sarma PK, Vijayalakshmi B. 2016. Theoretical analysis of heat transfer and friction factor for turbulent flow of nanofluids through pipes. Canad J Chemi Eng. 94:565–575. doi: 10.1002/cjce.22417
  • Yang J, Shen HS. 2003. Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. J Sound Vib. 261:871–893. doi: 10.1016/S0022-460X(02)01015-5
  • Yu W, Shi J, Wang L, Chen X, Min M, Wang L, Liu Y. 2017. The structure and mechanical property of silane-grafted-polyethylene/SiO2 nanocomposite fiber rope. Aquac Fish. 2:34–38. doi: 10.1016/j.aaf.2017.01.003
  • Zamani Nouri A. 2017. Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses. Comput Concrete. 19:325–331. doi: 10.12989/cac.2017.19.3.325
  • Zamani Nouri A. 2018a. The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution. Comput Concrete. 21:31–37.
  • Zamani Nouri A. 2018b. Vibration analysis of silica nanoparticle-reinforced concrete pipes filled with compressible fluid surrounded by soil foundation. Struct Concrete. 19:1195–1201. doi:10.1002/suco.201700185.
  • Zamani Nouri A. 2018c. Seismic response of soil foundation surrounded Fe2O3nanoparticlesreinforced concrete pipes conveying fluid. Soil Dynam Earthq Eng. 106:53–59. doi: 10.1016/j.soildyn.2017.12.009
  • Zhang H, Wen W, Yan J. 2017. Application of immunohistochemistry technique in hydrobiological studies. Aquac Fish. 2:140–144. doi: 10.1016/j.aaf.2017.04.004
  • Zhang YL, Reese JM, Gorman DG. 2002. A comparative study of axisymmetric finite elements for the vibration of thin cylindrical shells conveying fluid. Int J Numeric Meth Eng. 54:89–110. doi: 10.1002/nme.418

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.