803
Views
26
CrossRef citations to date
0
Altmetric
Articles

Kriging models for aero-elastic simulations and reliability analysis of offshore wind turbine support structures

ORCID Icon, &
Pages 545-558 | Received 03 Apr 2018, Accepted 06 Sep 2018, Published online: 26 Sep 2018

References

  • Agarwal P, Manuel L. 2007. Simulation of offshore wind turbine response for extreme limit states. Proceedings of OMAE2007 26th International Conference on Offshore Mechanics and Arctic Engineering, 10–15 June 2007, San Diego, CA.
  • Barker TB. 2005. Quality by experimental design. Boca Raton (FL): CRC Press.
  • Box GE, Hunter WG, Hunter JS. 1978. Statistics for experimenters.
  • Bucher C, Bourgund U. 1990. A fast and efficient response surface approach for structural reliability problems. Struct Saf. 7(1):57–66. doi: 10.1016/0167-4730(90)90012-E
  • Bush E, Manuel L. 2009. Foundation models for offshore wind turbines. ASME wind energy symposium; AIAAOrlando; Florida.
  • Carswell W, Arwade SR, DeGroot DJ, Lackner MA. 2014b. Soil-structure reliability of offshore wind turbine monopile foundations. Wind Eng. doi: 10.1002/we.1710
  • Carswell W, Arwade S, Myers A, Hajjar J. 2014a. Reliability analysis of monopile offshore wind turbine support structures. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures.223.
  • Couckuyt I, Dhaene T, Demeester P. 2014. Oodace toolbox: a flexible object-oriented kriging implementation. J Mach Learn Res. 15(1):3183–3186.
  • Der Kiureghian A, Haukaas T, Fujimura K. 2006. Structural reliability software at the University of California, Berkeley. Struct Saf. 28(1):44–67. doi: 10.1016/j.strusafe.2005.03.002
  • DNV. 2010. Fatigue design of offshore steel structures. Recommended practice DNV-RP-C203; Det Norske Veritas.
  • Fischer T, De Vries W, Schmidt B. 2010. UpWind design basis (WP4: Offshore foundations and support structures). Project UpWind.
  • Gaspar B, Teixeira A, Soares CG. 2014. Assessment of the efficiency of kriging surrogate models for structural reliability analysis. Prob Eng Mech. 37:24–34. doi: 10.1016/j.probengmech.2014.03.011
  • Hohenbichler M, Gollwitzer S, Kruse W, Rackwitz R. 1987. New light on first-and second-order reliability methods. Struct Saf. 4(4):267–284. doi: 10.1016/0167-4730(87)90002-6
  • IEC. 2005. Iec 61400-1: wind turbines–part 1: design requirements. Geneva: International Electrotechnical Commission.
  • IEC. 2009. Iec 61400-3: wind turbines–part 3: design requirements for offshore wind turbines. Geneva: International Electrotechnical Commission.
  • Jha A, Dolan D, Gur T, Soyoz S, Alpdogan C. 2009. Comparison of API & IEC standards for offshore wind turbine applications in the US Atlantic Ocean: phase II. Contract. 303:275–3000.
  • Jonkman BJ. 2009. Turbsim user’s guide: version 1.50. Golden (CO): National Renewable Energy Laboratory.
  • Jonkman JM, Buhl MLJ. 2005. FAST user’s guide - technical report NREL/EL-500-38230 national renewable energy laboratory; Colorado. Report nr 144 pp.
  • Jonkman J, Musial W. 2010. Offshore code comparison collaboration (OC3) for IEA wind task 23 offshore wind technology and deployment. Golden (CO): National Renewable Energy Laboratory (NREL).
  • Jonkman JM, Butterfield S, Musial W, Scott G. 2009. Definition of a 5-MW reference wind turbine for offshore system development. Colorado: National Renewable Energy Laboratory. Report nr NREL/TP-500-38060.
  • Kaymaz I. 2005. Application of kriging method to structural reliability problems. Struct Saf. 27(2):133–151. doi: 10.1016/j.strusafe.2004.09.001
  • Kim DH, Lee SG. 2015. Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads. Renew Energ. 79:161–166. doi: 10.1016/j.renene.2014.11.052
  • Lataniotis C, Marelli S, Sudret B. 2015. Uqlab user manual–Kriging (gaussian process modelling), report UQLab-V0.9-105, chair of risk, safety & uncertainty quantification. Zurich: ETH.
  • Morató A, Sriramula S, Krishnan N, Nichols J. 2017. Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation. Renew Energ. 101:126–143. doi: 10.1016/j.renene.2016.08.056
  • Morató Casademunt A, Sriramula S, Krishnan N. 2015. A computational framework for the reliability of offshore wind turbine support structures. Safety and reliability of complex engineered systems; Sep; ESREL; Zurich, Switzerland. pp. 4181–4187.
  • Morató Casademunt A, Sriramula S, Krishnan N. 2016. Reliability analysis of offshore wind turbine support structures using kriging models. Safety and reliability of complex engineered systems; Sep; ESREL; Glasgow, UK.
  • Muskulus M, Schafhirt S. 2015. Reliability-based design of wind turbine support structures. Symposium on Reliability of Engineering System. SRES; Hangzhou, China. pp. 1–11.
  • NORSOK. 2004. Design of steel structures. standard N-004. Lysaker: Standards Norway.
  • Norton E, Quarton D. 2003. Recommendations for design of offshore wind tubines (RECOFF). D3 Deliverable-Collated Sensitivity Studies, Document No. 2762.
  • Rasmussen CE. 2006. Gaussian processes for machine learning.
  • Sacks J, Schiller SB, Welch WJ. 1989. Designs for computer experiments. Technometrics. 31(1):41–47. doi: 10.1080/00401706.1989.10488474
  • Santner TJ, Williams BJ, Notz WI. 2013. The design and analysis of computer experiments. New York: Springer Science & Business Media.
  • Shi X, Palos Teixeira Â, Zhang J, Guedes Soares C. 2015. Kriging response surface reliability analysis of a ship-stiffened plate with initial imperfections. Struct Infrastruct Eng. 11(11):1450–1465. doi: 10.1080/15732479.2014.976575
  • Sorensen JD, Tarp-Johansen N. 2005. Reliability-based optimization and optimal reliability level of offshore wind turbines. Int J Offshore Polar. 15(02):245–250.
  • Sørensen JD, Toft HS. 2010. Probabilistic design of wind turbines. Energies. 3(2):241–257. doi: 10.3390/en3020241
  • Wang GG. 2003. Adaptive response surface method using inherited latin hypercube design points. Trans-Am Soc Mech Eng J Mech Design. 125(2):210–220.
  • Wei K, Arwade SR, Myers AT. 2014. Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading. Eng Struct. 79:58–69. doi: 10.1016/j.engstruct.2014.08.010
  • Yang H, Zhu Y, Lu Q, Zhang J. 2015. Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines. Renew Energ. 78:16–25. doi: 10.1016/j.renene.2014.12.061
  • Zhang L, Lu Z, Wang P. 2015. Efficient structural reliability analysis method based on advanced kriging model. Appl Math Model. 39(2):781–793. doi: 10.1016/j.apm.2014.07.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.