170
Views
3
CrossRef citations to date
0
Altmetric
Articles

A new method for the structural optimisation of a common type of square wing plate used in the wave glider

, ORCID Icon, , , , & show all
Pages 755-764 | Received 21 Mar 2018, Accepted 05 Dec 2018, Published online: 25 Dec 2018

References

  • Amabili M, Balasubramanian P, Breslavsky ID, Ferrari G, Garziera R, Riabova K. 2016. Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate. J Sound Vib. 385:81–92. doi: 10.1016/j.jsv.2016.09.015
  • Chatterjee A. 2016. Sensitivity and error analysis of a coupled micro-resonator array for ultra-sensitive mass detection using matrix perturbation theory. IEEE Sens J. 16(5):1304–1309. doi: 10.1109/JSEN.2015.2499266
  • Chaves-Vargas M, Dafnis A, Reimerdes HG, Schröder KU. 2015. Modal parameter identification of a compression-loaded CFRP stiffened plate and correlation with its bucking behavior. Prog Aerosp Sci. 78(SI):39–49. doi: 10.1016/j.paerosci.2015.05.009
  • Chen YJ, Li YC, Ma Z, Chen HX. 2015. Hydrodynamic design and analysis on the underwater glider. J Shipbuild China. 56(3):39–48.
  • Daniel J, Manley J, Trenaman N. 2011. The wave glider enabling a new approach to persistent ocean observation and research. Ocean Dyn. 61(10):1509–1520. doi: 10.1007/s10236-011-0408-5
  • Druecker S, Steglich D, Merckelbach L, Werner A, Bargmann S. 2016. Finite element damage analysis of an underwater glider-ship collision. J Mar Sci Technol. 21(2):261–270. doi: 10.1007/s00773-015-0349-7
  • Fox RL, Kapoor MP. 2012. Rates of change of Eigenvalues and Eigenvectors. AIAA J. 6(12):2426–2429. doi: 10.2514/3.5008
  • Frolov S, Bellingham J, Anderson W, et al. 2011. Wave glider – a platform for persistent monitoring of algal blooms. MTS/IEEE Kona Conference, OCEANS'11; Sep 19–22; Waikoloa, HI, USA. p. 1–5.
  • Ganesh Ram RK, Cooper YN, Bhatia V, Karthikeyan R, Periasamy C. 2014. Design optimization and analysis of NACA 0012 airfoil using computational fluid dynamics and genetic algorithm. Appl Mech Mater. 664:111–116. doi: 10.4028/www.scientific.net/AMM.664.111
  • Hine R, Willcox S, Hine G, et al. 2009. The wave glider: a wave-powered autonomous marine vehicle. MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, OCEANS 2009; Oct 26–29; Biloxi, MS, USA. p. 1–6.
  • Jablonka A. 2016. Stochastic sensitivity analysis for structural dynamics systems via the second-order perturbation. Arch Appl Mech. 86(11):1913–1926. doi: 10.1007/s00419-016-1149-1
  • Javaid MY, Ovinis M, Hashim FBM, Maimun A, Ahmed YM. 2017. Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. Int J Nav Archit Ocean Eng. 9(4):382–389. doi: 10.1016/j.ijnaoe.2016.09.010
  • Jia LJ. 2014a. Study of operation principle of two-part architecture and dynamic behavior of wave glider [Master Thesis]. National Ocean Technology Center.
  • Jia LJ, Zhang XM, Qi ZF, Qin YF, Sun XJ. 2014b. Hydrodynamic analysis of submarine of the wave glider. Adv Mater Res. 834–836:1505–1511. doi: 10.4028/www.scientific.net/AMR.834-836.1505
  • Liu P, Su YM, Liu HX, Liao YL. 2014. Propulsive performance analysis of tandem asynchronous flapping foil. J Shanghai Jiao Tong U. 48(4):457–463.
  • Mejri S, Gagnol V, Le TP, Sabourin L, Ray P. 2011. Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Tech. 82:351–359. doi: 10.1007/s00170-015-7336-3
  • Ngo P, Al-Sabban W, Thomas J, Anderson W, Das J. 2013. An analysis of regression models for predicting the speed of a wave glider autonomous surface vehicle. In: Proceedings of Australasian Conference on Robotics and Automation. Sydney, Australian: University of New South Wales.
  • Olson RA. 2012. Communications architecture of the liquid robotics wave glider. Ifac Proc Volumes. 45(5):255–259. doi: 10.3182/20120410-3-PT-4028.00042
  • Orlowitz E, Brandt A. 2016. Operational modal analysis for dynamic characterization of a Ro-Lo ship. J Ship Res. 58(4):216–224. doi: 10.5957/JOSR.58.4.140015
  • Rasid ZA. 2015. The natural frequency of the shape memory alloy anti-symmetric angle-ply composite plates using finite element method. Appl Mech Mater. 695(2):52–55.
  • Rocha PAC, Albiero D, Fernandes MPG, Fernandes JL. 2015. Aerodynamic performance of NACA four-digit profiles in small-scale wind turbines for small farms. Semin-Cienc Agrar. 36(3):1227–1239. doi: 10.5433/1679-0359.2015v36n3p1227
  • Sahin I, Acir A. 2015. Numerical and experimental Investigations of lift and drag Performances of NACA 0015 wind turbine airfoil. Int J Mater Mech Manuf. 3(1):22–25.
  • Singh Y, Bhattacharyya SK, Idichandy VG. 2017. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results. J Ocean Eng Sci. 2(2):90–119. doi: 10.1016/j.joes.2017.03.003
  • Sun HG, Li YJ, Ye B. 2016. Numerical analysis of Effects of leading edge radius on resistance to foreign objective damage capability of titanium alloy blade. Aeroengine. 42(2):1–6.
  • Vanhonacker P. 1980. Differential and difference sensitivities of natural frequencies and modal shapes of mechanical structures. AIAA J. 18(12):1511–1514. doi: 10.2514/3.7738
  • Villareal TA, Wilson C. 2014. A comparison of the Pac-X Trans-Pacific wave glider data and Satellite data (MODIS, Aquarius. TRMM and VIIRS). Plos One. 9(3):1–5. doi: 10.1371/journal.pone.0092280
  • Wang Q, Zhao QJ, Wang B. 2016. Influence of leading edge shape on dynamic stall characteristics of airfoil. J Nanjing U Aeronaut Astronautics. 48(2):205–211.
  • Yang L, Cao JJ, Yao BH, Lian L. 2017. Configuration and hydrodynamic performance calculation of an underwater glider. J Ship Sci Technol. 39(3):107–112.
  • Yao W, Jaiman RK. 2017. Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm. J Fluid Mesh. 827:394–414. doi: 10.1017/jfm.2017.470
  • Zhao BQ. 2016. The Horizontal fixed wing design of underwater glider. J Ship Sci Technol. 38(1):103–107.
  • Zheng BH, Xu CY, Yao CL, Chen JW. 2015. The effect of attack angle on the performance of wave glider wings. Appl Mech Mater. 727–728:587–591. doi: 10.4028/www.scientific.net/AMM.727-728.587

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.