534
Views
13
CrossRef citations to date
0
Altmetric
Articles

Parametric CFD investigation of ALS technique on reduction in drag of bulk carrier

ORCID Icon, ORCID Icon &
Pages 417-430 | Received 14 Jan 2019, Accepted 17 Jul 2019, Published online: 06 Sep 2019

References

  • Brostow W. 2008. Drag reduction in flow: review of applications, mechanism and prediction. J Ind Eng Chem. 14(4):409–416. doi: 10.1016/j.jiec.2008.07.001
  • Ceccio S. 2010. Friction drag reduction of external flows with bubble and gas injection. Annu Rev Fluid Mech. 42:183–203. doi: 10.1146/annurev-fluid-121108-145504
  • Davenport J, Hughes N, Shorten R, Pou M. 2011. Drag reduction by air release promotes fast ascent in jumping emperor penguins – a novel hypothesis. Mar Ecol Prog Ser. 430:171–182. doi: 10.3354/meps08868
  • Dogrul A, Arikan Y, Celik F. n.d. A numerical investigation of air lubrication effect on ship resistance.
  • Drew D, Passman S. 1998. Theory of multicomponent fluids. New York: Springer.
  • Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T. 2000. Frictional drag reduction with air lubricant over a super-water repellent surface. J Mar Sci Technol. 5:123–130. doi: 10.1007/s007730070009
  • Hayder AA, Yunus R, Abdura N, Charles A. 2013. Going against the flow – a review of non-additive means of drag reduction. J Ind Eng Chem. 19(1):27–36. doi: 10.1016/j.jiec.2012.07.023
  • ITTC. 2014. ITTC – Recommended procedures and guidelines practical guidelines for ship CFD applications 7.5-03-02-03. ITTC. https://ittc.info/media/1357/75-03-02-03.pdf.
  • ITTC – Recommended Procedures. 1999. ITTC – recommended procedures- performance, propulsion 1978 ITTC performance prediction method. Int Towing Tank Conf. 7.5-02(03-01.4):1–31.
  • Kanai A, Miyata H. 2001. Direct numerical simulation of wall turbulent flows with microbubbles. Int J Numer Meth Fluids. 35:593–615. doi: 10.1002/1097-0363(20010315)35:5<593::AID-FLD105>3.0.CO;2-U
  • Kanokjaruvijit K, Martinez-botas RF. 2005. Jet impingement on a dimpled surface with different crossflow schemes. Int J Heat Mass Transfer. 48:161–170. doi: 10.1016/j.ijheatmasstransfer.2004.08.005
  • Kawabuchi M, Kawakita C, Mizokami S, Higasa S, Kodan Y, Takano S. 2011. CFD Predictions of bubbly flow around an energy-saving ship with Mitsubishi air lubrication system. Mitsubishi Heavy Ind Tech Rev. 48(1):53–57.
  • Kim S, Cleaver J. 1995. The persistence of drug reduction following the injection of microbubbles into a turbulent boundarylayer. Int Commun Heat Mass Transfer. 22(3):353–357. doi: 10.1016/0735-1933(95)00026-U
  • Kim D, Moin P. 2010. Direct numerical study of air layer drag reduction phenomenon over a backward-facing step. Center for Turbulence Research Annual Research Briefs.
  • Kodama Y, Takahashi T, Makino M, Hori T, Ueda T, Kawamura N, Shibata M, Kato H, Inoue T, Suzuki T, Toda Y. 2004. Practical application of microbubbles to ships – large scale model experiments and a new full scale experiment. National Maritime Research Institute, Toyo University, Azuma Shipping, Osaka Univ & Chugoku Marine Paints.
  • Lu J, Fernández A, Tryggvason G. 2005. The effect of bubbles on the wall drag in a turbulent channel flow. Phys Fluids. 17:95–102.
  • Madavan K, Deutsch S, Merkle C. 1985. Numerical investigations into the mechanisms of microbubble drag reduction. Trans ASME. 107:370–377.
  • Madavan K, Deutsch S, Merkle CL. 1984. Measurements of local skin friction in a microbubble modified turbulent boundary layer. The Pennsylvania State University: Cambridge University Press.
  • McCormick M, Bhattacharyya R. 1973. Drag reduction of a submersible hull by electrolysis. Naval Eng J. 85:11–16. doi: 10.1111/j.1559-3584.1973.tb04788.x
  • Merkle CL, Deutsch S. 1992. Drag reduction in liquid boundary layers by gas injection. Prog Astronaut Aeronaut. 123:351–412.
  • Mohammad A, Majid M. 2015. A review on the drag reduction methods of the ship hulls for improving the hydrodynamic performance. Int J Maritime Technol. 4:51–64.
  • Mohanarangam K, Cheung SC, Tu JY, Chen L. 2009. Numerical simulation of micro-bubble drag reduction using population balance model. Ocean Eng. 36:863–872. doi: 10.1016/j.oceaneng.2009.05.001
  • Moriguchi Y, Kato H. 2002. Influence of microbubble diameter and distribution on frictional resistance reduction. J Mar Sci Technol. 7:79–85. doi: 10.1007/s007730200015
  • Prosperetti A, Tryggvason G. 2009. Computational methods for methods for multiphase flow. University of New Mexico, USA: Cambridge University Press.
  • Rzehak R, Krepper E. 2013. CFD modeling of bubble-induced turbulence. Int J Multiphase Flow. 55:138–155. doi: 10.1016/j.ijmultiphaseflow.2013.04.007
  • Shereena S, Vengadesan S, Idichand V. 2013. CFD study of drag reduction in axisymmetric underwater vehicles using air jets. Eng Appl Comput Fluid Mech. 7(2):193–209.
  • Sindagi SC, Vijayakumar R, Nirali S, Saxena B. 2018. Numerical investigation of influence of micro bubble injection, distribution, void fraction and flow speed on frictional drag reduction. International Conference on Ocean Engineering -2018; IIT Madras: Springer.
  • Sindagi S, Vijayakumar R, Saxena BK. 2018a. CFD investigation of MBDR technique on frictional drag reduction of bulk carrier. 6th National Conference on Coastal, Harbour and Ocean Engineering; Pune: Indian Society of Hydrualics. pp. 408–424.
  • Sindagi S, Vijayakumar R, Saxena BK. 2018b. Investigation of Air Lubrication System (ALS) on drag reduction of ship. Worldwide Maritime Technology Conference; Shanghai: Shanghai Society of Naval Architects and Marine Engineers. p. 8.
  • Sindagi SC, Vijayakumar R, Saxena B. 2017. An EFD and CFD based review of microbubble drag reduction (MBDR) of ship. Shenzhen, People’s Republic of China: BIT’s 6th Annual World Congress of Ocean-2017.
  • Sindagi SC, Vijayakumar R, Saxena B. 2017. Drag reduction of ships: innovative & effective technologies to reduce propulsion power and in turn fuel consumption. In World Shipping Forum. Madras: Institute of Marine Engineers, Chennai Division; p. 1–10.
  • Sindagi SC, Vijayakumar R, Saxena B. 2018. Frictional drag reduction: review and numerical simulation of microbubble drag reduction in a channel flow. Int J Maritime Eng. 160(Part A2):121–140. 3940/rina.ijme.2018.a2.460.
  • Sindagi S, Vijaykumar R, Saxena B. 2016. Frictional drag reduction: an EFD and CFD based review of mechanisms. IIT Madras: International conference on EFD and CFD – MARHY 2016.
  • Skudarnov P, Lin C. 2006. Drag reduction by gas injection into turbulent boundary layer: density ratio effect. Int J Heat Fluid Flow. 27:436–444. doi: 10.1016/j.ijheatfluidflow.2005.12.002
  • Wu C-S, He S-L, Zhu D-X, Gu M. n.d. Numerical simulation of microbubble flow around an axisymmetric body. Conference of global chinese scholars on hydrodynamics.
  • Xu J, Maxey M, Karniadakis G. 2002. Numerical simulation of turbulent drag reduction using micro-bubbles. J Fluid Mech. 468:271–281. doi: 10.1017/S0022112002001659
  • Yoshiaki K, Akira K, Takahito T, Hideki K. 2000. Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow. 21:582–588. doi: 10.1016/S0142-727X(00)00048-5
  • Yoshiaki K, Akira K, Takahito T, Shigeki N, Takafumi K. 2002. Drag reduction of ships by microbubbles. The University of Tokyo: National Maritime Research Institute of Japan.
  • Yuehao L, Wang L, Green L, Song K, Wang L, Smith R. 2015. Advances of drag-reducing surface technologies in turbulence based on boundary layer control. J Hydrodyn. 27(4):473–487. doi: 10.1016/S1001-6058(15)60507-8
  • Zverkhovskyi O, Kerkvlietb M, Lampeb A, Vazb G, Terwisga TV. 2015. MARIN Academy, Wageningen, NL; MARIN, Wageningen, NL Delft University of Technology, NL; DAMEN Shipyards Gorinchem, NL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.