275
Views
3
CrossRef citations to date
0
Altmetric
Articles

Predicting loads and dynamic responses of an offshore wind turbine in a nonlinear mixed sea

ORCID Icon
Pages 373-385 | Received 15 Jun 2019, Accepted 10 Feb 2020, Published online: 20 Feb 2020

References

  • Agarwal P, Manuel L. 2009. Modeling nonlinear irregular waves in reliability studies for offshore wind turbines. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE. 4(PART B). p. 1161–1168.
  • Agarwal P, Manuel L. 2010. Incorporating irregular nonlinear waves in coupled simulation of offshore wind turbines. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010-0996.
  • Agarwal P, Manuel L. 2011. Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines. Appl Ocean Res. 33:215–227. doi: 10.1016/j.apor.2011.02.001
  • Brodtkorb PA. 2004. The probability of occurrence of dangerous wave situations at sea [Ph.D. thesis]. Trondheim (Norway): Norwegian University of Science and Technology, NTNU.
  • Buows E, Gunther H, Rosenthal W, Vincent CL. 1985. Similarity of the wind wave spectrum in finite depth water: 1. spectral form. J Geophys Res. 90(C1):975–986. doi: 10.1029/JC090iC01p00975
  • Gücüyen E. 2017. Analysis of offshore wind turbine tower under environmental loads. Ships Offshore Struct. 12(4):513–520. doi: 10.1080/17445302.2016.1181027
  • Jonkman JM. 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine, technical report NREL/TP-500-41958.
  • Jonkman JM, Buhl ML Jr. 2005. FAST user’s guide. NREL/EL-500-38230 [previously NREL/EL-500-29798]. Golden (CO): NREL.
  • Langley RS. 1987. A statistical analysis of non-linear random waves. Ocean Eng. 14(5):389–407. doi: 10.1016/0029-8018(87)90052-7
  • Li L, Yuan ZM, Ji CY, Gao Y. 2019. Ultimate structural and fatigue damage loads of a spar-type floating wind turbine. Ships Offshore Struct. 14(6):582–588. doi: 10.1080/17445302.2018.1532867
  • Morató A, Sriramula S, Krishnan N. 2019. Kriging models for aero-elastic simulations and reliability analysis of offshore wind turbine support structures. Ships Offshore Struct. 14(6):545–558. doi: 10.1080/17445302.2018.1522738
  • Passon P, Branner K. 2014. Load calculation methods for offshore wind turbine foundations. Ships Offshore Struct. 9(4):433–449. doi: 10.1080/17445302.2013.820108
  • Passon P, Branner K. 2016. Condensation of long-term wave climates for the fatigue design of hydrodynamically sensitive offshore wind turbine support structures. Ships Offshore Struct. 11(2):142–166. doi: 10.1080/17445302.2014.967994
  • Raheem SEA. 2016. Nonlinear behaviour of steel fixed offshore platform under environmental loads. Ships Offshore Struct. 11(1):1–15.
  • Saha N, Gao Z, Moan T, Naess A. 2014. Short-term extreme response analysis of a jacket supporting an offshore wind turbine. Wind Energy. 17:87–104. doi: 10.1002/we.1561
  • Sun C, Jahangiri V. 2019. Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions. Eng Struct. 178:472–483. doi: 10.1016/j.engstruct.2018.10.053
  • Wang YG. 2014. Calculating crest statistics of shallow water nonlinear waves based on standard spectra and measured data at the Poseidon platform. Ocean Eng. 87:16–24. doi: 10.1016/j.oceaneng.2014.05.012
  • Wang YG. 2015. Robust frequency-domain identification of parametric radiation force models for a floating wind turbine. Ocean Eng. 109:580–594. doi: 10.1016/j.oceaneng.2015.09.049
  • Wang YG. 2016. Prediction of short-term distributions of load extremes of offshore wind turbines. China Ocean Eng. 30(6):851–866. doi: 10.1007/s13344-016-0055-1
  • Wang YG. 2017. Optimal threshold selection in the POT method for extreme value prediction of the dynamic responses of a Spar-type floating wind turbine. Ocean Eng. 134:119–128. doi: 10.1016/j.oceaneng.2017.02.029
  • Wang YG, Wang LF. 2017. Predicting the performance of a floating wind energy converter in a realistic sea. Renew Energy. 101:637–646. doi: 10.1016/j.renene.2016.09.025
  • Wang YG, Xia YQ. 2012. Simulating mixed sea state waves for marine design. Appl Ocean Res. 37:33–44. doi: 10.1016/j.apor.2012.03.003
  • Wang YG, Xia YQ. 2013. Calculating nonlinear wave crest exceedance probabilities using a Transformed Rayleigh method. Coastal Eng. 78:1–12. doi: 10.1016/j.coastaleng.2013.03.002
  • Wang YG, Xia YQ, Liu XJ. 2013. Establishing robust short-term distributions of load extremes of offshore wind turbines. Renew Energy. 57:606–619. doi: 10.1016/j.renene.2013.03.003
  • Wei K, Myers AT, Arwade SR. 2017. Dynamic effects in the response of offshore wind turbines supported by jackets under wave loading. Eng Struct. 142:36–45. doi: 10.1016/j.engstruct.2017.03.074
  • Winterstein SR, Ude TC, Kleiven G. 1994. Springing and slow drift responses: predicted extremes and fatigue vs. simulation. In: Proc. 7th International behaviour of Offshore structures, (BOSS), Vol. 3, p. 1–15.
  • Yeter B, Garbatov Y, Guedes Soares C. 2019. Ultimate strength assessment of jacket offshore wind turbine support structures subjected to progressive bending loading. Ships Offshore Struct. 14(2):165–175. doi: 10.1080/17445302.2018.1484030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.